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@ Krylov subspace methods
o Lanczos algorithm
@ Block Krylov method

© Linear system solvers
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[terative methods

e Subspace iteration/ power method: multiple passes over the matrix A.

e With ¢ iterations, we can achieve:

IA— Azgz |F < (1+ )| A — Avio] ||F.

0 ifg=0 (%) (if gap is large) or

e g=0 (%) (if gap is too small or for gap independent analysis).
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Krylov subspace methods

e Given a square matrix A and a starting vector z1, the Krylov Subspace of dimension
q is given by:
K,(A,z ) =span{zi, Azy,..., A%z}

Important class of projection methods for solving linear systems and for eigenvalue
problems.

Properties of Ky:
K, = {p(A)z|p = polynomial of degree < ¢}.
K, = K, for all ¢ > qi. Moreover, K, is invariant under A.

e For square matrix A : Arnoldi’s Algorithm

For symmetric matrix A : Lanczos Algorithm
For rectangular matrix B € R™*?¢ and SVD, we consider A = B' B.
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Lanczos algorithm

e Given a symmetric matrix A € R%¥¢ and a starting vector z;, compute an orthonormal basis

Z, of K (A, z1).

Lanczos algorithm

@ Choose a starting vector z;, with unit norm. Set 5; = 0, zg = 0.

@ Forl=1,...,q—1
Y= Az — Bz
ar = (Y1, z1)

Y=Y —qz
Bir1 = ||lyill2- If Bi+1 = 0 then stop

Zit1 = Y1/ Bi+1

® Return Z, = [z1,..., 2]

In theory z;’s defined by 3-term recurrence are orthogonal. But in practice, we need

reorthogonalization.
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Lanczos algorithm

o The Rayleigh Ritz-projection is given by:
T,= 2, AZ,.

e The Ritz matrix is a tridiagonal matrix:

a1 B2
B2 az B3

B3 s P

L By gl

e Let u be the top eigenvector of T,.
e Eigenvector estimate of A will be w = Z,u.
o If non-symmetric, Arnoldi’s algorithm. T; will be Upper Hessenberg matrix.
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Convergence

Theorem (Lanczos algorithm Convergence)
_
Let v = 2572

be the gap between the first and second largest eigenvalues of a matriz A € R4*4_ If
Lanczos algorithm is initialized with a random Gaussian vector then, with high probability, after
=0 (log d/e) steps, we have for the estimate w = Z,u:

IA — Aww % < (1+¢€)[|A — Avio] |3

@ Gapless: For ¢ = O (%) steps, we obtain a w satisfying:

|4 - Aww" [} < (1+ )| A - Avio] 3.
e Total runtime: O(nnz(A)q) = O (nnz(A) : %).
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Proof:
First, we have

Claim: Amongst all vectors in the span of the Krylov subspace (which are given by
w = Z,x), w = Zyu minimizes the error |A — Aww " ||%.
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Proof:
First, we have

Claim: Amongst all vectors in the span of the Krylov subspace (which are given by
w = Z,x), w = Z,u minimizes the error |A — Aww " ||%.

We know that, this is equivalent to maximizing || Aww " |%.
Next, u is the top eigenvector of T = ZJAZq.
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Proof:
First, we have

Claim: Amongst all vectors in the span of the Krylov subspace (which are given by
w = Z,x), w = Z,u minimizes the error |A — Aww " ||%.

We know that, this is equivalent to maximizing || Aww " |%.
Next, u is the top eigenvector of T = Z;AZq.

Next, we show that, if we set ¢ = O (%) and compute Z,, then there a vector
w = Zyx such that (v, w) > 1 —e.

Le., there is a w in the Krylov subspace that has a large inner product with the top
eigenvector v;.
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The vector w can be written as
w = py(A)z1,

where p,(+) is called the Lanczos polynomial and has degree q.
For any ¢ degree polynomial p,, there is some « such that Z,x = p,(A)z1, because any
linear combinations of z1, Azi,..., A%2 lie in the span of Z,.
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The vector w can be written as
w = py(A)zi,

where p,(+) is called the Lanczos polynomial and has degree q.
For any ¢ degree polynomial p,, there is some « such that Z,x = p,(A)z1, because any
linear combinations of z1, Azi,..., A%2 lie in the span of Z,.

Let us write z; = Zle piv; and py(A)z; = Zle piv;, then we have
pi = HiPq(Ai)

Claim: There is a O (ﬂlog(l/e’)) degree polynomial p such that p(1) = 1 and
p(t)| <€ for 0 <t <1—7.
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Polynomials

4

Plots are from https://www.chrismusco.com/amlds2023/notes/lecturell.html.
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https://www.chrismusco.com/amlds2023/notes/lecture11.html

We set py(t) = p(t/A1), and we have p; = pipg(\i).
We follow similar steps as the power method proof.

o1l pg(A1)|pa] |1

For O (\/glog(l/e’)) with ¢ = /e/d/d>.

M_ PNl Pg(Nif/ M) il < \/—
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Block Krylov method

@ For larger k > 1 (finding the top-k singular vectors/values).

Block Lanczos Method
@ Choose S € R%** a random Gaussian matrix .
@ Set K=[S,AS,...,A1"1S].
@ Z = orth(K)

Compute T = ZTAZ

e Set Uy, to top k eigenvectors of T
o Return Z,Uj,

Total runtime: O(nnz(A)kq). With ¢ = O <log\/ig/e>.
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Krylov methods

Further Reading:

@ Randomized Block Krylov Methods for Stronger and Faster Approzimate Singular Value
Decomposition by Cameron Musco, Christopher Musco.

@ Structural Convergence Results for Approximation of Dominant Subspaces from Block Krylov Spaces
by Petros Drineas, Ilse Ipsen, Eugenia-Maria Kontopoulou, Malik Magdon-Ismail.

@ https://www.chrismusco.com/amlds2022/lectures/lanczos_method.html
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https://arxiv.org/abs/1504.05477
https://arxiv.org/abs/1504.05477
https://arxiv.org/abs/1609.00671
https://www.chrismusco.com/amlds2022/lectures/lanczos_method.html

Matlab Demo
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Linear system solvers

@ Given a square matrix A € R¥? and a vector b € R?, solve:
Az =b.
@ lterative methods: Solve for x iteratively as:
41 = x +ar
r = a certain direction given some starting vector xg.

o Minimum residual methods: x(a) = & + ar, with r = b — Ax.
orthogonal condition.

@ Steepest Descent:

7 .

Ti41
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min, ||b — Az(a)||2 with some

= b-— A:l:l
= (r,r)/(Ar;, 1)
= x;+ar
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Krylov subspace methods

@ Lanczos Algorithm: For symmetric matrix A, orthonormal basis Z, and tridiagonal matrix
T,. (Arnoldi’s method for non-symmetric)

From Petrov-Galerkin condition, we get:

x, =m0+ Z, T, Z] 1o

Select z1 = ro/||7o||, then
T, =T —+ ZqTq_lel

Several algorithms mathematically equivalent/similar to this approach:
Full Orthogonalization method (FOM), Incomplete OM (I0OM), GMRES, Orthmin,
Axelsson’s CGLS, Conjugate Gradient (CG), and others.
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Lanczos Method

Lanczos Method for Linear Systems
o Compute To = b— Awo,ﬂl = ||’I°0|| and , 21 = ’l"o/ﬂl.
@ Forl=1,...,q

Yy = Az — Bz

= (yi, z1)

Y=Y —qz

Bi+1 = ||lyill2- If Bi1 = 0 then stop
Zi+1 = yl/6l+1

@ Set Z, = [z1,..., 24| and T, = tridiag(B;, a;, Bj+1)-

o Compute wy = ST, 'e; and x4 = o + Z,w,.
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Conjugate Gradient Method

Popular variant of the Krylov subspace methods when the input matrix is S.P.D.
Conjugate Gradient Algorithm

@ Compute rg = b — Axg, po = 70.

o Iterate: Until Convergence

a; = (ry,r)/(Api, pr)
Ti+1 =T + P

T =T — qApy

B = (rig1, Tig1)/ (v, 1)
D1 = Ti+1 + Bip

The p;’s are A-conjugate with (Ap;, p;) = 0 for [ # j.
Convergence: with condition number k = Amax/Amin-

VE—1
VE+1
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Iterative methods

Further Reading:

@ [terative methods for sparse linear systems by Yousef Saad.

@ Numerical Methods for Large Figenvalue Problems by Yousef Saad.
@ [terative Methods for Optimization by C.T. Kelly.
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