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Lecture 13: Krylov subspace methods
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Iterative methods

Subspace iteration/ power method: multiple passes over the matrix A.

With q iterations, we can achieve:

‖A−Azqz
>
q ‖F ≤ (1 + ε)‖A−Av1v

>
1 ‖F .

if q = O
(
log d/ε
γ

)
(if gap is large) or

q = O
(
log d/ε
ε

)
(if gap is too small or for gap independent analysis).
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Krylov subspace methods

Given a square matrix A and a starting vector z1, the Krylov Subspace of dimension
q is given by:

Kq(A, z1) = span{z1,Az1, . . . ,A
qz1}

Important class of projection methods for solving linear systems and for eigenvalue
problems.

Properties of Kq:
Kq = {p(A)z|p = polynomial of degree ≤ q}.
Kq = Kq1 for all q ≥ q1. Moreover, Kq1 is invariant under A.

For square matrix A : Arnoldi’s Algorithm

For symmetric matrix A : Lanczos Algorithm

For rectangular matrix B ∈ Rn×d and SVD, we consider A = B>B.
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Lanczos algorithm

Given a symmetric matrix A ∈ Rd×d and a starting vector z1, compute an orthonormal basis
Zq of Kq(A, z1).

Lanczos algorithm

Choose a starting vector z1, with unit norm. Set β1 = 0, z0 = 0.

For l = 1, . . . , q − 1

I yl = Azl − βlzl−1
I αl = 〈yl, zl〉
I yl = yl − αlzl
I βl+1 = ‖yl‖2. If βl+1 = 0 then stop
I zl+1 = yl/βl+1

Return Zq = [z1, . . . ,zq]

In theory zl’s defined by 3-term recurrence are orthogonal. But in practice, we need
reorthogonalization.
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Lanczos algorithm

The Rayleigh Ritz-projection is given by:

Tq = Z>q AZq.

The Ritz matrix is a tridiagonal matrix:

Tq =



α1 β2
β2 α2 β3

β3 α3 β4
· · ·
· · ·

βq αq

 .

Let u be the top eigenvector of Tq.

Eigenvector estimate of A will be w = Zqu.

If non-symmetric, Arnoldi’s algorithm. Tq will be Upper Hessenberg matrix.
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Convergence

Theorem (Lanczos algorithm Convergence)

Let γ = λ1−λ2

λ1
be the gap between the first and second largest eigenvalues of a matrix A ∈ Rd×d. If

Lanczos algorithm is initialized with a random Gaussian vector then, with high probability, after

q = O
(

log d/ε√
γ

)
steps, we have for the estimate w = Zqu:

‖A−Aww>‖2F ≤ (1 + ε)‖A−Av1v
>
1 ‖2F .

Gapless: For q = O
(

log d/ε√
ε

)
steps, we obtain a w satisfying:

‖A−Aww>‖2F ≤ (1 + ε)‖A−Av1v
>
1 ‖2F .

Total runtime: O(nnz(A)q) = O
(

nnz(A) · log d/ε√
ε

)
.
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Proof:
First, we have

Claim: Amongst all vectors in the span of the Krylov subspace (which are given by
w = Zqx), w = Zqu minimizes the error ‖A−Aww>‖2F .

We know that, this is equivalent to maximizing ‖Aww>‖2F .
Next, u is the top eigenvector of Tq = Z>q AZq.

Next, we show that, if we set q = O
(
log d/ε√

γ

)
and compute Zq, then there a vector

w = Zqx such that 〈v1,w〉 ≥ 1− ε.
I.e., there is a w in the Krylov subspace that has a large inner product with the top
eigenvector v1.
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The vector w can be written as
w = pq(A)z1,

where pq(·) is called the Lanczos polynomial and has degree q.
For any q degree polynomial pq, there is some x such that Zqx = pq(A)z1, because any
linear combinations of z1,Az1, . . . ,A

qz1 lie in the span of Zq.

Let us write z1 =
∑d

i=1 µivi and pq(A)z1 =
∑d

i=1 ρivi, then we have

ρi = µipq(λi)

Claim: There is a O
(√

1
γ log(1/ε′)

)
degree polynomial p̂ such that p̂(1) = 1 and

|p̂(t)| ≤ ε′ for 0 ≤ t ≤ 1− γ.
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Polynomials

Plots are from https://www.chrismusco.com/amlds2023/notes/lecture11.html.
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We set pq(t) = p̂(t/λ1), and we have ρi = µipq(λi).
We follow similar steps as the power method proof.

|ρj |
|ρ1|

=
pq(λi)|µi|
pq(λ1)|µ1|

=
p̂q(λi/λ1)|µi|
|µ1|

≤
√
ε/d.

For O
(√

1
γ log(1/ε′)

)
with ε′ =

√
ε/d/d3.
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Block Krylov method

For larger k ≥ 1 (finding the top-k singular vectors/values).

Block Lanczos Method

Choose S ∈ Rd×k a random Gaussian matrix .

Set K = [S,AS, . . . ,Aq−1S].

Z = orth(K)

Compute T = Z>AZ

Set Ũk to top k eigenvectors of T

Return ZqŨk

Total runtime: O(nnz(A)kq). With q = O
(

log d/ε√
ε

)
.
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Krylov methods

Further Reading:

Randomized Block Krylov Methods for Stronger and Faster Approximate Singular Value
Decomposition by Cameron Musco, Christopher Musco.

Structural Convergence Results for Approximation of Dominant Subspaces from Block Krylov Spaces
by Petros Drineas, Ilse Ipsen, Eugenia-Maria Kontopoulou, Malik Magdon-Ismail.

https://www.chrismusco.com/amlds2022/lectures/lanczos_method.html
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https://arxiv.org/abs/1609.00671
https://www.chrismusco.com/amlds2022/lectures/lanczos_method.html


Matlab Demo
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Linear system solvers

Given a square matrix A ∈ Rd×d and a vector b ∈ Rd, solve:

Ax = b.

Iterative methods: Solve for x iteratively as:

xl+1 = xl + αr

r = a certain direction given some starting vector x0.

Minimum residual methods: x(α) = x + αr, with r = b−Ax. minα ‖b−Ax(α)‖2 with some
orthogonal condition.

Steepest Descent:

rl = b−Axl

α = 〈rl, rl〉/〈Arl, rl〉
xl+1 = xl + αrl
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Krylov subspace methods

Lanczos Algorithm: For symmetric matrix A, orthonormal basis Zq and tridiagonal matrix
Tq. (Arnoldi’s method for non-symmetric)

From Petrov-Galerkin condition, we get:

xq = x0 + ZqT
−1
q Z>q r0

Select z1 = r0/‖r0‖, then
xq = x0 + ZqT

−1
q e1

Several algorithms mathematically equivalent/similar to this approach:
Full Orthogonalization method (FOM), Incomplete OM (IOM), GMRES, Orthmin,
Axelsson’s CGLS, Conjugate Gradient (CG), and others.
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Lanczos Method

Lanczos Method for Linear Systems

Compute r0 = b−Ax0, β1 = ‖r0‖ and , z1 = r0/β1.

For l = 1, . . . , q

I yl = Azl − βlzl−1
I αl = 〈yl, zl〉
I yl = yl − αlzl
I βl+1 = ‖yl‖2. If βl+1 = 0 then stop
I zl+1 = yl/βl+1

Set Zq = [z1, . . . ,zq] and Tq = tridiag(βj , αj , βj+1).

Compute wq = βT−1q e1 and xq = x0 + Zqwq.
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Conjugate Gradient Method

Popular variant of the Krylov subspace methods when the input matrix is S.P.D.

Conjugate Gradient Algorithm

Compute r0 = b−Ax0,p0 = r0.

Iterate: Until Convergence

I αl = 〈rl, rl〉/〈Apl,pl〉
I xl+1 = xl + αlpl
I rl+1 = rl − αlApl
I βl = 〈rl+1, rl+1〉/〈rl, rl〉
I pl+1 = rl+1 + βlpl

The pl’s are A-conjugate with 〈Apl,pj〉 = 0 for l 6= j.
Convergence: with condition number κ = λmax/λmin.

‖x∗ − xq‖A ≤ 2

[√
κ− 1√
κ+ 1

]q
‖x∗ − x0‖A
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Iterative methods

Further Reading:

Iterative methods for sparse linear systems by Yousef Saad.

Numerical Methods for Large Eigenvalue Problems by Yousef Saad.

Iterative Methods for Optimization by C.T. Kelly.
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https://www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf
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