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Lecture 12: Subspace iteration (power) method
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Outline

1 Iterative methods

2 Subspace iteration methods
Power method
Block power method
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Covered so far:

Linear least squares regression and Low rank approximation.

Linear Regression: Given a data matrix A ∈ Rn×d and a column vector b ∈ Rn, least-squares
regression solves:

x∗ = arg min
x∈Rd

‖Ax− b‖2. (1)

Low rank approximation: Given a data matrix A ∈ Rn×d and integer k, find a rank-k
approximation of A, such that.

Ak = arg minW :rank(W )=k‖A−W ‖F . (2)
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Covered so far: Sketching

Oblivious sketching - subspace embedding property.

‖Ax̃− b‖ ≤ (1 + ε)‖Ax∗ − b‖.

Similarly for low rank approximation: Suppose Ãk is rank k approximation obtained using
sketching AS, then

‖A− Ãk‖F ≤ (1 + ε)‖A−Ak‖F .

Skylark project: open source library for distributed randomized numerical linear algebra,
funded through XDATA program by DARPA and Air Force Research Laboratory.
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Iterative methods

Sketching methods : Single pass over data. Advantageous when data is too large to fit in
memory. Streaming settings.

Sketch size: For rank-k approximation, for dense input matrices - Gaussian - O
(
k
ε

)
or

SRFT/SRHT - O
(
k log(k/ε)

ε

)
.

Sparse matrices - Countsketch - O
(
k2

ε

)
.

Iterative methods - Multiple passes over data. Improved numerical results. Predate sketching
methods.

In numerous fields (system solvers, optimization, control systems, PDE solvers, scientific
computing, NLP, etc.) and many industry (oil refineries, auto modeling, electronics, Google
and Twitter (X?) and many more.)

Partial SVD - compute top k singular vectors/values.

1 Subspace iteration or block power method.
2 Krylov subspace method.
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Recall : PageRank

PageRank value of a page is given as:

PR(pi) =
1− d
N

+ d
∑

pj∈M(pi)

PR(pj)

L(pj)
,

p1, p2, ..., pN are the pages, M(pi) = set of pages that link to pi, L(pj) = number of
outbound links on page pj , N = total number of pages, and d = damping factor.

The values are the entries of the dominant right eigenvector of the modified adjacency
matrix rescaled so that each column adds up to one.

r =


PR(p1)
PR(p2)

...
PR(pN )
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r is the solution of the equation

r =


(1− d)/N
(1− d)/N

...
(1− d)/N

+ d


`(p1, p1) `(p1, p2) · · · `(p1, pN )

`(p2, p1)
. . .

...
... `(pi, pj)

`(pN , p1) · · · `(pN , pN )

r
the adjacency function `(pi, pj) is the ratio between number of links outbound from
page j to page i to the total number of outbound links of page j.

N∑
i=1

`(pi, pj) = 1,

The matrix is a stochastic matrix. Closely related to the problem of finding the
stationary points of Markov processes. It is also a variant of the eigenvector centrality
measure used commonly in network analysis.
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Subspace iteration methods
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Questions

Given a symmetric matrix A with eigen-decomposition A = UΛU>, then

1 What are the eigenvalues/eigenvectors of Aq for a given integer power q?
2 If A is nonsingular what are the eigenvalues/eigenvectors of A−1?
3 What are the eigenvalues/eigenvectors of p(A) for a polynomial p(·)?

If the matrix A has a certain spectral gap |λ1 − λ2|, what can we say about the spectral gap of A2?
Does it increase, decrease or remain the same in general?

Similarly, for a general matrix A ∈ Rn×d, with SVD A = UΣV >, what are the singular/eigen-values
of A>A?
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Power Method

Let us start with k = 1 (finding the top singular vector/value).

Given a matrix A ∈ Rn×d, with SVD A = UΣV >, find a vector z ≈ v1.

Power Method

Choose a random vector z0, E.g., z0 ∼ N (0, 1).

z0 = z0/‖z0‖2
For l = 1, . . . , q

I zl = A>(Azl−1)
I zl = zl/‖zl‖2

Return zq

Runtime = ?
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Power method intuition

UT Austin CSE 392/CS 395T/M 397C Feb, 2025 12 / 22



Convergence

Theorem (Power Method Convergence)

Let γ = σ1−σ2
σ1

be parameter capturing the gap between the first and second largest singular

values. If Power Method is initialized with a random Gaussian vector with A ∈ Rn×d then,

with high probability, after q = O
(
log d/ε
γ

)
steps, we have:

‖v1 − zq‖2 ≤ ε.

Total runtime: O(nnz(A)q) = O
(

nnz(A) · log d/εγ

)
.

Above also implies, ‖Azqz>q ‖2F ≥ (1− ε)2‖Av1v>1 ‖2F .
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Proof

Let us write z0 =
∑d

i=1 µivi in terms of the right singular vector basis.

If µ = [µ1, . . . , µd], we have µ = V >g/‖g‖2 for random Gaussian g.

Since V is orthogonal , we have ‖µ‖2 = 1.

With high probability,

1/poly(d) ≤ |µi| ≤ 1 i = 1, . . . , d.

Note that µ is Gaussian. We can show that poly(d) ≈ d3 with high probability.
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After q steps, we have zq = c(A>A)qz0 for some scaling c.

If we write zq =
∑d

i=1 ρivi, we have

ρi = cσ2qi µi.

Since A>A = V Σ2V >.

If the gap parameter is γ = σ1−σ2
σ1

, we can show that, for all j ≥ 2:

σj
σ1
≤ (1− γ).

For all j ≥ 2,
|ρj |
|ρ1|
≤ (1− γ)2q

|µi|
|µ1|
≤ (1− γ)2qpoly(d).
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For any 0 < x ≤ 1, we can show that (1− x)
q
x ≤ e−q.

(Hint: use Taylor series for log(1− x)).

If we set q =
log(poly(d)

√
d/ε)

γ = O
(
log d/ε
γ

)
, then we get

|ρj |
|ρ1| ≤

√
ε/d.

Since zq is a unit vector, we have
∑

i ρ
2
i = 1, and |ρ1| ≤ 1, hence

ρ21 ≥ 1− d(
√
ε/d)2 =⇒ |ρ1| ≥ 1− ε.

Therefore,
‖v1 − zq‖22 = 2− 2〈v1, zq〉 ≤ 2ε.
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Analysis without gap

Theorem (Gapless Power Method Convergence)

If Power Method is initialized with a random Gaussian vector then, with high probability,

after q = O
(
log d/ε
ε

)
steps, we obtain a zq satisfying:

‖A−Azqz>q ‖2F ≤ (1 + ε)‖A−Av1v>1 ‖2F .

Gap γ might be too small. Then, we do not care to find v1. Say, σ1 = σ2, then v2 is as
good as v1.
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Proof:
We know that ‖A−AzqzTq ‖2F = ‖A‖2F − ‖AzqzTq ‖2F .
So, to prove the above, we need to show ‖Azq‖22 ≥ (1− ε)2σ21.

We have,

‖Azq‖22 = zTq A
TAzq =

d∑
i=1

ρ2iσ
2
i ,

where ρi = vTi zq.

For q = O
(
log d/ε
ε

)
, from our previous analysis we have ρ1 ≥ (1− ε). Hence,

‖Azq‖22 =

d∑
i=1

ρ2iσ
2
i ≥ ρ21σ21 ≥ (1− ε)2σ21.
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Subspace iteration

For larger k ≥ 1 (finding the top-k singular vectors/values).

Block Power Method aka Simultaneous Iteration aka Subspace Iteration aka
Orthogonal Iteration.

Block Power Method

Choose S ∈ Rd×k a random Gaussian matrix .

Z0 = orth(S)

For l = 1, . . . , q
I Zl = A>(AZl−1)
I Zl = orth(Zl).

Return Zq

Total runtime: O(nnz(A)kq).
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Subspace iteration

Equivalent to sketching with input (A>A)q.

With q = O
(
log d/ε
ε

)
, we obtain a nearly optimal low-rank approximation:

‖A−AZZ>‖2F ≤ (1 + ε)‖A−AVkV >k ‖2F .

For q = O
(
log(nd)

ε

)
, we have

‖A−AZZ>‖2 ≤ (1 + ε)‖A−Ak‖2.
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Subspace iteration

Further Reading:

Sketching as a Tool for Numerical Linear Algebra by David Woodruff.

Subspace iteration randomization and singular value problems by Ming Gu.

Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix
decompositions by N Halko, P. Martinsson and J. Tropp.
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https://arxiv.org/pdf/1411.4357.pdf
https://arxiv.org/abs/1408.2208
https://arxiv.org/abs/0909.4061
https://arxiv.org/abs/0909.4061


Matlab Demo
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