## CSE 392/CS 395T/M 397C: Matrix and Tensor Algorithms for Data

Instructor: Shashanka Ubaru

University of Texas, Austin Spring 2025

## Lecture 12: Subspace iteration (power) method

# Outline

## 1 Iterative methods

2 Subspace iteration methods

- Power method
- Block power method

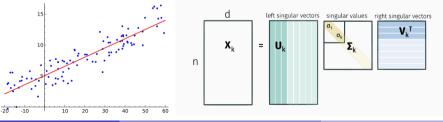
## Covered so far:

- Linear least squares regression and Low rank approximation.
- Linear Regression: Given a data matrix  $\mathbf{A} \in \mathbb{R}^{n \times d}$  and a column vector  $\mathbf{b} \in \mathbb{R}^n$ , least-squares regression solves:

$$\boldsymbol{x}^* = \arg\min_{\boldsymbol{x}\in\mathbb{R}^d} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}\|^2.$$
(1)

• Low rank approximation: Given a data matrix  $\mathbf{A} \in \mathbb{R}^{n \times d}$  and integer k, find a rank-k approximation of  $\mathbf{A}$ , such that.

$$\boldsymbol{A}_{k} = \arg\min_{\boldsymbol{W}: \operatorname{rank}(\boldsymbol{W}) = k} \|\boldsymbol{A} - \boldsymbol{W}\|_{F}.$$
(2)



UT Austin

CSE 392/CS 395T/M 397C

# Covered so far: Sketching



- Oblivious sketching subspace embedding property.
- $\|\boldsymbol{A}\tilde{\boldsymbol{x}} \boldsymbol{b}\| \le (1+\epsilon)\|\boldsymbol{A}\boldsymbol{x}^* \boldsymbol{b}\|.$
- Similarly for low rank approximation: Suppose  $\tilde{A}_k$  is rank k approximation obtained using sketching AS, then

$$\|\boldsymbol{A} - \tilde{\boldsymbol{A}}_k\|_F \le (1+\epsilon) \|\boldsymbol{A} - \boldsymbol{A}_k\|_F.$$

• *Skylark project*: open source library for distributed randomized numerical linear algebra, funded through XDATA program by **DARPA** and **Air Force Research Laboratory**.

## Iterative methods

- *Sketching methods* : Single pass over data. Advantageous when data is too large to fit in memory. Streaming settings.
- Sketch size: For rank-k approximation, for dense input matrices Gaussian  $O\left(\frac{k}{\epsilon}\right)$  or SRFT/SRHT  $O\left(\frac{k \log(k/\epsilon)}{\epsilon}\right)$ . Sparse matrices - Countsketch -  $O\left(\frac{k^2}{\epsilon}\right)$ .

# Iterative methods

- *Sketching methods* : Single pass over data. Advantageous when data is too large to fit in memory. Streaming settings.
- Sketch size: For rank-k approximation, for dense input matrices Gaussian  $O\left(\frac{k}{\epsilon}\right)$  or SRFT/SRHT  $O\left(\frac{k \log(k/\epsilon)}{\epsilon}\right)$ . Sparse matrices - Countsketch -  $O\left(\frac{k^2}{\epsilon}\right)$ .
- *Iterative methods* Multiple passes over data. Improved numerical results. Predate sketching methods.
- In *numerous fields* (system solvers, optimization, control systems, PDE solvers, scientific computing, NLP, etc.) and *many industry* (oil refineries, auto modeling, electronics, Google and Twitter (X?) and many more.)
- Partial SVD compute top k singular vectors/values.
  - **(**) Subspace iteration or block power method.
  - **2** Krylov subspace method.

## Recall : PageRank

• PageRank value of a page is given as:

$$PR(p_i) = \frac{1-d}{N} + d \sum_{p_j \in M(p_i)} \frac{PR(p_j)}{L(p_j)},$$

 $p_1, p_2, ..., p_N$  are the pages,  $M(p_i) =$  set of pages that link to  $p_i, L(p_j) =$  number of outbound links on page  $p_j$ , N = total number of pages, and d = damping factor.

• The values are the entries of the dominant right eigenvector of the modified adjacency matrix rescaled so that each column adds up to one.

$$\mathbf{r} = \begin{bmatrix} PR(p_1) \\ PR(p_2) \\ \vdots \\ PR(p_N) \end{bmatrix}$$

 $\bullet~{\bf r}$  is the solution of the equation

$$\mathbf{r} = \begin{bmatrix} (1-d)/N \\ (1-d)/N \\ \vdots \\ (1-d)/N \end{bmatrix} + d \begin{bmatrix} \ell(p_1, p_1) & \ell(p_1, p_2) & \cdots & \ell(p_1, p_N) \\ \ell(p_2, p_1) & \ddots & & \vdots \\ \vdots & & \ell(p_i, p_j) \\ \ell(p_N, p_1) & \cdots & & \ell(p_N, p_N) \end{bmatrix} \mathbf{r}$$

the adjacency function  $\ell(p_i, p_j)$  is the ratio between number of links outbound from page j to page i to the total number of outbound links of page j.

$$\sum_{i=1}^N \ell(p_i, p_j) = 1,$$

The matrix is a stochastic matrix. Closely related to the problem of finding the stationary points of Markov processes. It is also a variant of the eigenvector centrality measure used commonly in network analysis.

## Subspace iteration methods

# Questions

- Given a symmetric matrix  $\boldsymbol{A}$  with eigen-decomposition  $\boldsymbol{A} = \boldsymbol{U} \Lambda \boldsymbol{U}^{\top}$ , then
  - **()** What are the eigenvalues/eigenvectors of  $A^q$  for a given integer power q?
  - 2) If A is nonsingular what are the eigenvalues/eigenvectors of  $A^{-1}$ ?
  - What are the eigenvalues/eigenvectors of  $p(\mathbf{A})$  for a polynomial  $p(\cdot)$ ?
- If the matrix A has a certain spectral gap |λ<sub>1</sub> λ<sub>2</sub>|, what can we say about the spectral gap of A<sup>2</sup>? Does it increase, decrease or remain the same in general?
- Similarly, for a general matrix  $A \in \mathbb{R}^{n \times d}$ , with SVD  $A = U \Sigma V^{\top}$ , what are the singular/eigen-values of  $A^{\top} A$ ?

## Power Method

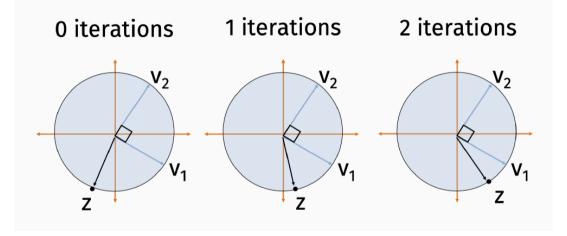
- Let us start with k = 1 (finding the top singular vector/value).
- Given a matrix  $A \in \mathbb{R}^{n \times d}$ , with SVD  $A = U \Sigma V^{\top}$ , find a vector  $z \approx v_1$ .

### **Power Method**

- Choose a random vector  $\boldsymbol{z}_0$ , E.g.,  $\boldsymbol{z}_0 \sim \mathcal{N}(0, 1)$ .
- $z_0 = z_0 / \|z_0\|_2$
- For  $l = 1, \dots, q$   $\boldsymbol{z}_l = \boldsymbol{A}^\top (\boldsymbol{A} \boldsymbol{z}_{l-1})$  $\boldsymbol{z}_l = \boldsymbol{z}_l / \|\boldsymbol{z}_l\|_2$
- Return  $\boldsymbol{z}_q$

Runtime = ?

## Power method intuition



# Convergence

#### Theorem (Power Method Convergence)

Let  $\gamma = \frac{\sigma_1 - \sigma_2}{\sigma_1}$  be parameter capturing the gap between the first and second largest singular values. If Power Method is initialized with a random Gaussian vector with  $\mathbf{A} \in \mathbb{R}^{n \times d}$  then, with high probability, after  $q = O\left(\frac{\log d/\epsilon}{\gamma}\right)$  steps, we have:

$$\|\boldsymbol{v}_1 - \boldsymbol{z}_q\|_2 \leq \epsilon.$$

Total runtime: 
$$O(\operatorname{nnz}(\boldsymbol{A})q) = O\left(\operatorname{nnz}(\boldsymbol{A}) \cdot \frac{\log d/\epsilon}{\gamma}\right).$$

Above also implies,  $\|\boldsymbol{A}\boldsymbol{z}_{q}\boldsymbol{z}_{q}^{\top}\|_{F}^{2} \geq (1-\epsilon)^{2}\|\boldsymbol{A}\boldsymbol{v}_{1}\boldsymbol{v}_{1}^{\top}\|_{F}^{2}$ .

# Proof

- Let us write  $\boldsymbol{z}_0 = \sum_{i=1}^d \mu_i \boldsymbol{v}_i$  in terms of the right singular vector basis.
- If  $\boldsymbol{\mu} = [\mu_1, \dots, \mu_d]$ , we have  $\boldsymbol{\mu} = \boldsymbol{V}^\top \boldsymbol{g} / \|\boldsymbol{g}\|_2$  for random Gaussian  $\boldsymbol{g}$ .
- Since V is orthogonal , we have  $\|\mu\|^2 = 1$ .
- With high probability,

$$1/\text{poly}(d) \le |\mu_i| \le 1 \quad i = 1, ..., d.$$

Note that  $\mu$  is Gaussian. We can show that  $poly(d) \approx d^3$  with high probability.

- After q steps, we have  $\boldsymbol{z}_q = c(\boldsymbol{A}^{\top}\boldsymbol{A})^q \boldsymbol{z}_0$  for some scaling c.
- If we write  $\boldsymbol{z}_q = \sum_{i=1}^d \rho_i \boldsymbol{v}_i$ , we have

$$\rho_i = c\sigma_i^{2q}\mu_i.$$

Since  $\mathbf{A}^{\top}\mathbf{A} = \mathbf{V}\Sigma^{2}\mathbf{V}^{\top}$ .

- After q steps, we have  $\boldsymbol{z}_q = c(\boldsymbol{A}^{\top}\boldsymbol{A})^q \boldsymbol{z}_0$  for some scaling c.
- If we write  $\boldsymbol{z}_q = \sum_{i=1}^d \rho_i \boldsymbol{v}_i$ , we have

$$\rho_i = c\sigma_i^{2q}\mu_i.$$

Since  $\mathbf{A}^{\top}\mathbf{A} = \mathbf{V}\Sigma^{2}\mathbf{V}^{\top}$ .

• If the gap parameter is  $\gamma = \frac{\sigma_1 - \sigma_2}{\sigma_1}$ , we can show that, for all  $j \ge 2$ :

$$\frac{\sigma_j}{\sigma_1} \le (1-\gamma).$$

• For all 
$$j \ge 2$$
,  
$$\frac{|\rho_j|}{|\rho_1|} \le (1-\gamma)^{2q} \frac{|\mu_i|}{|\mu_1|} \le (1-\gamma)^{2q} \operatorname{poly}(d).$$

• For any  $0 < x \le 1$ , we can show that  $(1-x)^{\frac{q}{x}} \le e^{-q}$ . (Hint: use Taylor series for  $\log(1-x)$ ).

• If we set 
$$q = \frac{\log(\operatorname{poly}(d)\sqrt{d/\epsilon})}{\gamma} = O\left(\frac{\log d/\epsilon}{\gamma}\right)$$
, then we get  $\frac{|\rho_j|}{|\rho_1|} \le \sqrt{\epsilon/d}$ .

• Since  $z_q$  is a unit vector, we have  $\sum_i \rho_i^2 = 1$ , and  $|\rho_1| \le 1$ , hence

$$\rho_1^2 \ge 1 - d(\sqrt{\epsilon/d})^2 \implies |\rho_1| \ge 1 - \epsilon.$$

Therefore,

$$\|\boldsymbol{v}_1 - \boldsymbol{z}_q\|_2^2 = 2 - 2\langle \boldsymbol{v}_1, \boldsymbol{z}_q \rangle \le 2\epsilon.$$

# Analysis without gap

#### Theorem (Gapless Power Method Convergence)

If Power Method is initialized with a random Gaussian vector then, with high probability, after  $q = O\left(\frac{\log d/\epsilon}{\epsilon}\right)$  steps, we obtain a  $\mathbf{z}_q$  satisfying:

$$\|\boldsymbol{A} - \boldsymbol{A} \boldsymbol{z}_q \boldsymbol{z}_q^{\top}\|_F^2 \leq (1+\epsilon) \|\boldsymbol{A} - \boldsymbol{A} \boldsymbol{v}_1 \boldsymbol{v}_1^{\top}\|_F^2.$$

Gap  $\gamma$  might be too small. Then, we do not care to find  $v_1$ . Say,  $\sigma_1 = \sigma_2$ , then  $v_2$  is as good as  $v_1$ .

#### **Proof:**

We know that 
$$\|\boldsymbol{A} - \boldsymbol{A}\boldsymbol{z}_q\boldsymbol{z}_q^T\|_F^2 = \|\boldsymbol{A}\|_F^2 - \|\boldsymbol{A}\boldsymbol{z}_q\boldsymbol{z}_q^T\|_F^2$$
.  
So, to prove the above, we need to show  $\|\boldsymbol{A}\boldsymbol{z}_q\|_2^2 \ge (1-\epsilon)^2 \sigma_1^2$ .

We have,

$$\|oldsymbol{A}oldsymbol{z}_q\|_2^2 = oldsymbol{z}_q^Toldsymbol{A}oldsymbol{z}_q = \sum_{i=1}^d 
ho_i^2 \sigma_i^2,$$

where  $\rho_i = \boldsymbol{v}_i^T \boldsymbol{z}_q$ .

#### **Proof:**

We know that 
$$\|\boldsymbol{A} - \boldsymbol{A}\boldsymbol{z}_q\boldsymbol{z}_q^T\|_F^2 = \|\boldsymbol{A}\|_F^2 - \|\boldsymbol{A}\boldsymbol{z}_q\boldsymbol{z}_q^T\|_F^2$$
.  
So, to prove the above, we need to show  $\|\boldsymbol{A}\boldsymbol{z}_q\|_2^2 \ge (1-\epsilon)^2 \sigma_1^2$ .

We have,

$$\| \boldsymbol{A} \boldsymbol{z}_q \|_2^2 = \boldsymbol{z}_q^T \boldsymbol{A}^T \boldsymbol{A} \boldsymbol{z}_q = \sum_{i=1}^d 
ho_i^2 \sigma_i^2,$$

where  $\rho_i = \boldsymbol{v}_i^T \boldsymbol{z}_q$ . For  $q = O\left(\frac{\log d/\epsilon}{\epsilon}\right)$ , from our previous analysis we have  $\rho_1 \ge (1-\epsilon)$ . Hence,

$$\| \boldsymbol{A} \boldsymbol{z}_{q} \|_{2}^{2} = \sum_{i=1}^{d} \rho_{i}^{2} \sigma_{i}^{2} \ge \rho_{1}^{2} \sigma_{1}^{2} \ge (1-\epsilon)^{2} \sigma_{1}^{2}.$$

# Subspace iteration

- For larger  $k \ge 1$  (finding the top-k singular vectors/values).
- Block Power Method aka Simultaneous Iteration aka Subspace Iteration aka Orthogonal Iteration.

### **Block Power Method**

- Choose  $\boldsymbol{S} \in \mathbb{R}^{d \times k}$  a random Gaussian matrix .
- $\boldsymbol{Z}_0 = \operatorname{orth}(\boldsymbol{S})$

For 
$$l = 1, \dots, q$$
  
 $Z_l = A^\top (AZ_{l-1})$   
 $Z_l = \operatorname{orth}(Z_l).$ 

• Return  $\boldsymbol{Z}_q$ 

Total runtime: O(nnz(A)kq).

# Subspace iteration

• Equivalent to sketching with input  $(\mathbf{A}^{\top}\mathbf{A})^{q}$ .

• With  $q = O\left(\frac{\log d/\epsilon}{\epsilon}\right)$ , we obtain a nearly optimal low-rank approximation:

$$\|\boldsymbol{A} - \boldsymbol{A}\boldsymbol{Z}\boldsymbol{Z}^{\top}\|_{F}^{2} \leq (1+\epsilon)\|\boldsymbol{A} - \boldsymbol{A}\boldsymbol{V}_{k}\boldsymbol{V}_{k}^{\top}\|_{F}^{2}.$$

• For  $q = O\left(\frac{\log(nd)}{\epsilon}\right)$ , we have

$$\|\boldsymbol{A} - \boldsymbol{A}\boldsymbol{Z}\boldsymbol{Z}^{\top}\|_{2} \leq (1+\epsilon)\|\boldsymbol{A} - \boldsymbol{A}_{k}\|_{2}.$$

### Further Reading:

- Sketching as a Tool for Numerical Linear Algebra by David Woodruff.
- Subspace iteration randomization and singular value problems by Ming Gu.
- Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions by N Halko, P. Martinsson and J. Tropp.

### Matlab Demo