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Lecture 12: Subspace iteration (power) method
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Outline

@ Iterative methods

© Subspace iteration methods
@ Power method
@ Block power method
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Covered so far:

@ Linear least squares regression and Low rank approximation.

@ Linear Regression: Given a data matrix A € R"*? and a column vector b € R", least-squares

regression solves:
x* = arg min || Az — b||.
zeR?

e Low rank approzimation: Given a data matrix A € R"*? and integer k, find a rank-k

approximation of A, such that.

Ay = arg minW:rank(W):k”A - W”F
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Covered so far: Sketching

SKETCH AND SOLVE

Generic scheme using sketching:

—_— —

generate sketching matrix 8 R™", W x
compute SA and Sb S Yy
return X :=argmin, g ||S(Ax — b)||

5
I
El

@ Oblivious sketching - subspace embedding property.
|AZ —b]| < (1 + )| Az" — b]|.

Similarly for low rank approximation: Suppose A, is rank k approximation obtained using
sketching AS, then

|4~ Aullr < (140 A~ Als.

Skylark project: open source library for distributed randomized numerical linear algebra,
funded through XDATA program by DARPA and Air Force Research Laboratory.
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Iterative methods

@ Sketching methods : Single pass over data. Advantageous when data is too large to fit in
memory. Streaming settings.

o Sketch size: For rank-k approximation, for dense input matrices - Gaussian - O (%) or
SRFT/SRHT - O (Elegt/a)),

Sparse matrices - Countsketch - O (%)
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[terative methods

@ Sketching methods : Single pass over data. Advantageous when data is too large to fit in
memory. Streaming settings.

o Sketch size: For rank-k approximation, for dense input matrices - Gaussian - O (%) or
SRFT/SRHT - O (Elegt/a)),
Sparse matrices - Countsketch - O (%)

o lterative methods - Multiple passes over data. Improved numerical results. Predate sketching
methods.

o In numerous fields (system solvers, optimization, control systems, PDE solvers, scientific
computing, NLP, etc.) and many industry (oil refineries, auto modeling, electronics, Google
and Twitter (X?) and many more.)

@ Partial SVD - compute top k singular vectors/values.

@ Subspace iteration or block power method.
© Krylov subspace method.
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Recall : PageRank

e PageRank value of a page is given as:

1-d

P1,D2,...,pN are the pages, M (p;) = set of pages that link to p;, L(p;) = number of
outbound links on page pj, N = total number of pages, and d = damping factor.

@ The values are the entries of the dominant right eigenvector of the modified adjacency
matrix rescaled so that each column adds up to one.

PR(pl)
PR(pz)
r = .
PR(pN)
S UT Austin . P CSE 892/CS 395T/M 397C |
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@ r is the solution of the equation

(1—d)/N Up1,p1) Lp1,p2) -+ A(p1,pN)
r= (1_,d)/N +d tp2, p1) ' : r
: : (pi, pj)
(1—d)/N Upn,p1) U(pN,pN)

the adjacency function ¢(p;,p;) is the ratio between number of links outbound from
page j to page ¢ to the total number of outbound links of page j.

N
> Upiopi) =1,
i=1

The matrix is a stochastic matrix. Closely related to the problem of finding the
stationary points of Markov processes. It is also a variant of the eigenvector centrality
measure used commonly in network analysis.
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Subspace iteration methods
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Questions

@ Given a symmetric matrix A with eigen-decomposition A = UAU T, then

@ What are the eigenvalues/eigenvectors of A? for a given integer power ¢?
@ If A is nonsingular what are the eigenvalues/eigenvectors of A=1?
© What are the eigenvalues/eigenvectors of p(A) for a polynomial p(-)?

@ If the matrix A has a certain spectral gap |A1 — 2|, what can we say about the spectral gap of A%?
Does it increase, decrease or remain the same in general?

@ Similarly, for a general matrix A € R"*?, with SVD A = ULV ", what are the singular/eigen-values
of ATA?
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Power Method

e Let us start with £ = 1 (finding the top singular vector/value).
e Given a matrix A € R™*? with SVD A =UXV', find a vector z ~ v;.

Power Method
e Choose a random vector zg, E.g., zg ~ N (0, 1).
° 2o = zo/z0ll2
e Forli=1,...,¢q
zZ] = AT(Azlfl)
z = zi/zll2

e Return z,

Runtime = ¢

UT Austin CSE 392/CS 395T/M 397C Feb, 2025 11 /22



Power method intuition

0 iterations 1 iterations 2 iterations
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Convergence

Theorem (Power Method Convergence)

Let v = ”10;1‘72 be parameter capturing the gap between the first and second largest singular
values. If Power Method is initialized with a random Gaussian vector with A € R™ ¢ then,
with high probability, after ¢ = O (%) steps, we have:

[v1 — zgll2 < e

Total runtime: O(nnz(A)q) = O (nnz(A) . %).

Above also implies, HAzqz;'—H%J > (1 — €)% Aviv] ||%.
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Proof

o Let us write zg = Zle 1;v; in terms of the right singular vector basis.
o If = [u1,...,pq), we have u = V' 'g/||g||2 for random Gaussian g.

e Since V is orthogonal , we have ||p||? = 1.

o With high probability,

1/poly(d) < || <1 i=1,....d

Note that g is Gaussian. We can show that poly(d) ~ d* with high probability.
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o After g steps, we have z, = c(AT A)zy for some scaling c.

. d
o If we write z, = )7, piv;, we have

_ .2q
Pi = CO; i

Since ATA=VX2VvT,
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After g steps, we have z, = c(AT A)%2, for some scaling c.

. d
o If we write z, = )7, piv;, we have
— ~r2
pi = co;’ .

Since ATA=VX2VT,
If the gap parameter is vy =

01—02
o1

we can show that, for all j > 2:

For all 5 > 2,
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q
e For any 0 < x <1, we can show that (1 —z)z <e 7.
(Hint: use Taylor series for log(1 — x)).

o If we set ¢ = log(pOIy log(poly(d)/d/e) _ <1°g7d/€> then we get 24 | | < e/d.

e Since z; is a unit Vector, we have Y. p7 = 1, and |p1| < 1, hence
pi>1—d(\e/d)? = |pi|>1~-e

Therefore,

lor — 2413 = 2 = 2(v1, ) < 2e.
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Analysis without gap

Theorem (Gapless Power Method Convergence)

If Power Method is initialized with a random Gaussian vector then, with high probability,
after ¢ = O (%) steps, we obtain a z4 satisfying:

IA — Azgzg 7 < (1+ )| A~ Avio] |7

Gap v might be too small. Then, we do not care to find vy. Say, 01 = 02, then vs is as
good as vj.
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Proof:
We know that |A — Azezl |3 = |A|% — [|Azz] ||3..
So, to prove the above, we need to show || Az,||3 > (1 — €)%0?.

We have,

d
|AZ|I3 = 2y AT Az, =) pio?,
i=1

where p; = v} z,.
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Proof:
We know that |4 — Az,=T |3 = | All% — | Az, |2
So, to prove the above, we need to show || Az,||3 > (1 — €)%0?.

We have,

|Az|[3 = 2, AT Az, = sz I3,
i=1
where p; = v} z,.

For ¢ = O <1°g€d/ 6) from our previous analysis we have p; > (1 — €). Hence,

d
HAZqH%:Zpi >P1U1 (1—6) %
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Subspace iteration

e For larger k£ > 1 (finding the top-k singular vectors/values).

@ Block Power Method aka Simultaneous Iteration aka Subspace Iteration aka
Orthogonal Iteration.

Block Power Method
e Choose 8 € R¥™F a random Gaussian matrix .
e Zy = orth(S)
e Forl=1,...,¢q

Z - AT(AZ )
Z = OI‘th(Zl).

e Return Z,

Total runtime: O(nnz(A)kq).
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Subspace iteration

o Equivalent to sketching with input (AT A).

e Withg=0 <%), we obtain a nearly optimal low-rank approximation:

lA—AZZT|[}F < (1+€)|A - AV, |[3.

e Forq=0 <M), we have

€

IA~AZZ |z < (1+ )| A~ Agll2.
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Subspace iteration

Further Reading:
@ Sketching as a Tool for Numerical Linear Algebra by David Woodruff.

@ Subspace iteration randomization and singular value problems by Ming Gu.

@ Finding structure with randomness: Probabilistic algorithms for constructing approrimate matriz
decompositions by N Halko, P. Martinsson and J. Tropp.

UT Austin CSE 392/CS 395T/M 397C Feb, 2025 21 /22


https://arxiv.org/pdf/1411.4357.pdf
https://arxiv.org/abs/1408.2208
https://arxiv.org/abs/0909.4061
https://arxiv.org/abs/0909.4061

Matlab Demo
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