CSE 392/CS 395T /M 397C: Matrix and Tensor Algorithms for Data

Instructor: Shashanka Ubaru

University of Texas, Austin
Spring 2025

UT Austin CSE 392/CS 395T/M 397C



Lecture 11: Randomized SVD

UT Austin > 39 95T /M 397C



Outline

@ Low rank approximation

© Randomized SVD - sampling

@ Randomized SVD - sketching

UT Austin CSE 392/CS 395T/M 397C



Low rank approximation

Given a large data matrix, we wish to compute its low rank approximation for:
o Compression
@ De-noising
e Pattern finding - clustering
e Make hard problems tractable, e.g., matrix completion.
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Types of low rank approximations

Depending on the applications, we can consider different types of low rank matrix
approximations. Most common ones are:

e Truncated SVD (PCA)
e CUR decomposition

e Non-negative matrix factorization
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CUR decomposition

Given A € R™*9, a particular type of low rank approximation:
e A row sampling matrix S; € R®*" and R = §; A € R
e A column sampling matrix Sy € R¥¢, and C = AS, € R"*¢
e A matrix U € R“*¢| such that A ~ CUR and ¢ < {n,d}.
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Low rank approximation

o Given a data matrix A € R™*? and integer k, find a rank-k approximation of A.

o Ay =US, V., =UUT A=AV, V.

d n d d
_ d .
n - n n :
A U S vT

U; = arg min HA UU A|% = arg A, IUUT A%,
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Randomized SVD: Proto-algorithm

Input: Data matrix A € R™*? and target rank k .
Output: Approximate rank-k£ SVD: HkEkaT .

e Draw a random matrix S € R4>™,

@ Form the sketch Y = AS € R™*™,

e Compute an orthonormal matrix @ such that Y = QR.
e Form m x d matrix B = Q" A.

e Compute SVD of the small matrix B = H kflkaT .

o Form H, = Qﬂk.

S is a sampling/sketching matrix.
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LinearTimeSVD

o Input: Data matrix A € R"*¢ and integers m, k such that 1 < k < m < d, and
{pi}d; with p; > 0and 32, p; = L.

Output: H; and f)k.

o Fort =1 tom,

Pick ¢ € [d], with Pr[i = j] = p;.

Set Cyt = Ayi/\/mpi

Compute C'TC and its SVD: CTC = WS W,

Compute Hy = C’ka];l.

Single pass over A.
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Sampling - Analysis

Given A € R™*?¢ and Hj, is computed from the LinearTimeSVD algorithm, then

|A— H.H/] A% < |A— Ap||% +2VE|AAT —CCT|p
|A— H.H Al < ||A— Al +2]|AAT —CCT|2

These results hold for any p;’s.
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Sampling - Analysis

Given A € R™*¢ and Hj, is computed from the LinearTimeSVD algorithm, then

IA— HyH{ Al < | A - Agll: +2VE|AAT — CCT|r
IA — H.H; A|f < |A— Ayl +2]|AAT - CCT |2

These results hold for any p;’s.

Proof: First, we note that

|A — HyHy Allf = ||AlF — | AT Hy %
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Next, we relate || AT Hy|/% and Ele 02(C) as:

k
|||ATHkII% —> 0i(C)| < VK|AAT —CC .

t=1

We also have i

k
> 0H(C) =Y oF(A) < VHAAT - CCT| .
t=1 t=1

Combining,

k
|||ATHkII?: — Y 0i(A)| <2Vk|AAT —CCT||p.

t=1
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Length squared sampling

Given A € R™ ¢ let Hj, is computed from the LinearTimeSVD algorithm using length

12
squared sampling, i.e., p; = BH::E;” for some B < 1. If m > ck/Be2, then
F

E[|A — H H{ Al7] < [|A - Agl|% + €| All%,
and if m > c1klog(1/8)/Be? with probability 1 — 4:
IA — HyHy Al < || A~ AgllE + €| AlE

In addition, if m > cslog(1/8)/Be* with probability 1 — 4:

|A — H.Hy A3 < | A~ Ay3 + el Al|-
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Recall AMM

12
For length squared sampling, i.e., compute C' € R™*™ with p; = B HQI*IEH , then we have
F

lAAT —CCT|F < \/—HAHF

Combining with the previous results, we get the expectation bounds.
We then use the Markov’s inequality to get the probabilistic bounds.

Recall, we obtained similar results for CUR decomposition using length squared sampling.
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Randomized SVD using sketching

Suppose A, =H kflkW,;r is the rank-k approximation we obtain from randomized SVD.
We wish to obtain relative error guarantees of the form:

IA = Akllr < (1 +6)lA— Agllp

We use sketching and the subspace embedding property.
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SVD by sketching

Given A € R™ 4 let § € R™*" be a sketching matrix such that if it is a Countsketch

matrix with m = O(k?/e) or SRHT with m = O(klogk/¢), or Gaussian sketch with
m = O(k/e), then with high probability:

|A = Agllp < (1+€)||A — Agllr,

where Ay, is a rank-k approximation in rowspace of SA.
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SVD by sketching

Given A € R™ 4 let § € R™*" be a sketching matrix such that if it is a Countsketch

matrix with m = O(k?/e) or SRHT with m = O(klogk/¢), or Gaussian sketch with
m = O(k/e), then with high probability:

|A = Agllp < (1+€)||A — Agllr,

where Ay, is a rank-k approximation in rowspace of SA.

Proof: Let Uy be the top k left singular vectors of A. Consider:
IUL(SUL)'SA - A7
We wish to show this is (1 +¢€)||A — Ag[|%.
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Since the columns of A — Ay are orthogonal to the columns of Uy, by the matrix
Pythagorean theorem :

|UL(SUL)TSA - A} =

UT Austin CSE 392/CS 395T/M 397C



Since the columns of A — Ay are orthogonal to the columns of Uy, by the matrix
Pythagorean theorem :

|UL(SUL)TSA - A} =

We have to show ||(SUL)TSA — S, VT[22 = O(e)|| A — Ag||%.

We have A = ULV ' = UpS,V,| + U, 2,V .
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Since the columns of A — Ay are orthogonal to the columns of Uy, by the matrix
Pythagorean theorem :

|UL(SUL)TSA - A} =

We have to show ||(SUL)TSA — S, VT[22 = O(e)|| A — Ag||%.

We have A = ULV ' = UpS,V,| + U, 2,V .

We need [[(SUL) SUL_iZ, Vil 1% = O(e) | A — A3

Note that, (SU)" and (SU;) " have the same row space. We can write

(SU)" = G(SU)T.
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For a subspace embedding S, we have

U STSU, — I, <

DO | =

We can show |G| < 4.
Hence, we need to show ||(SU) " SU,, %, £V, . [|% = O(e)||A — A%
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For a subspace embedding S, we have

U STSU, — I, <

DO | =

We can show |G| < 4.
Hence, we need to show ||(SU) " SU,, %, £V, . [|% = O(e)||A — A%

Using the AMM property, we have with high probability

€
1(SUL) " SUn 13k Vil < 97 1UKIFNIA = AgllF < 9€]| A — Ay[F-
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Two sided sketching

Let S be a O(e)- subspace embedding for the row space of S1A, where S; is as in the
above result. Then,

|AS2(S1AS2)1514 — A||f < (1 + €)||A — Agl|%.

We can compute ASs, (S14S52)", 814 in O(nnz(A) + (n+ d)poly(k/e)) time.
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Further Reading

e Halko, Nathan, Per-Gunnar Martinsson, and Joel A. Tropp. “Finding structure with
randomness: Probabilistic algorithms for constructing approximate matrix
decompositions.” STAM review 53.2 (2011): 217-288.

e Clarkson, Kenneth L., and David P. Woodruff. “Low-rank approximation and
regression in input sparsity time.” Journal of the ACM (JACM) 63.6 (2017): 1-45.
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Matlab Demo
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