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Lecture 10: Sampling and preconditioning for least squares
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Sketch and solve

Recall:

Generate a sketching matrix S ∈ Rm×n.
Compute sketches SA and Sb.
Solve:

x̃ = min
x∈Rd

‖SAx− Sb‖22.

Typically, m = poly(d/ε).

A

𝑛×𝑑	

b

x =𝑆 𝑆

𝑚×𝑛	
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Subspace embedding for sketch and solve

Sketch and solve

Suppose S ∈ Rm×n is a subspace ε-embedding for span([A b]).
Let,

x∗ = min
x∈Rd

‖Ax− b‖2

x̃ = min
x∈Rd

‖S(Ax− b)‖2,

for ε ≤ 1/3, we have
‖Ax̃− b‖2 ≤ (1 + 3ε)‖Ax∗ − b‖2

Implies, we have O(1/ε2) dependency on the error tolerance.
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Alternate proof

Sketch and solve

If S ∈ Rm×n is a Countsketch matrix with m = O(d2/ε) or SRHT with m = O(d log d/ε),
or Gaussian sketch with m = O(d/ε), then

‖Ax̃− b‖2 ≤ (1 + ε)‖Ax∗ − b‖2

Proof: Let us consider an orthonormal basis U for A.
Let, Uỹ = Ax̃ and Uy∗ = Ax∗. Then,

‖Ax̃− b‖22 = ‖Ax∗ − b‖22 + ‖Ax̃−Ax∗‖22

and
‖Uỹ − b‖22 = ‖Uy∗ − b‖22 + ‖Uỹ −Uy∗‖22

Need to show that ‖U(ỹ − y∗)‖22 = ‖ỹ − y∗‖22 = O(ε)‖Uy∗ − b‖22.
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For a subspace embedding S, we have

‖U>S>SU − I‖2 ≤
1

2
.

Hence,

‖ỹ − y∗‖2 ≤

By normal equation, we have

U>S>SUỹ = US>Sb,

so,
‖ỹ − y∗‖2 ≤ 2‖U>S>S(Uy∗ − b)‖2.

For S with the choice of m, we have

Pr

[
‖U>S>S(Uy∗ − b)‖F ≥ 3

√
ε

d
‖U‖F ‖Uy∗ − b‖F

]
≤ δ.
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Sampling for least squares

We can consider sampling rows of [A b].

Recall leverage scores.

Leverage scores

Given A ∈ Rn×d, and an orthonormal basis U for span(A), for i ∈ [n], the ith leverage
score

`i(A) = sup
x

(Ai∗x)2

‖Ax‖2
= ‖Ui∗‖2.
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Sampling for least squares

Algorithm:

Compute the row-leverage scores of A, `i, i = 1, . . . , n.
Pick m rows of A and the corresponding elements of b with respect to the
probabilities pi = `i/d to i ∈ [n].
Rescale sampled rows of A and sampled elements of b by 1/

√
mpi.

Solve the induced problem.

A

𝑛×𝑑	

bx = %𝐴

𝑚×𝑑	

(𝑏*𝑥 =
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Leverage score sampling is subspace embedding

Let A ∈ Rn×d with r = rank(A), and S ∈ Rm×n be a sampling matrix with probabilities
pi = `i/r, and Si∗ = ej/

√
mpj with Pr(j = i) = pi. If m = O(r log(r/δ)/ε2), then S is

ε-subspace embedding of span(A) with probability 1− δ.

Proof: Let U ∈ Rn×r be orthonormal with span(U) = span(A).

For k ∈ [m], let Xk = mU>[Sk∗]
>Sk∗U − I, so

1

m

∑
k

Xk = U>S>SU − I,

and for ε-embedding, we need to bound its spectral norm.
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Matrix Chernoff

Let Xk for k ∈ [m] be i.i.d copies of symmetric random X ∈ Rr×r with γ, σ2 > 0,
E[X] = 0, ‖X‖2 ≤ γ, and ‖E[X2]‖2 ≤ σ2. Then for ε > 0,

Pr(‖ 1

m

∑
k

Xk‖2 ≥ ε) ≤ 2r exp(−mε2/(σ2 + γε/3)).

Apply to

X =
1

pj
[Uj∗]

>Uj∗ − I with Pr(j = i) = pi = `i/r = ‖Ui∗‖22/r.

We have
E[X] =

‖X‖2 ≤

E[X2] =

so, ‖E[X2]‖2 ≤ r − 1.
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Computing the leverage scores

To compute the leverage scores exactly, we need U , i.e., compute the SVD of A.

Naive cost O(nd2).

Can be approximately estimated in O(nnz(A) log n+ d3) time.

Algorithm:
Given A ∈ Rn×d, a subspace ε-embedding S1 ∈ Rm×n for A, and a JL matrix S2 ∈ Rd×m′

.
so that ‖x>S2‖ = (1± ε)‖x‖ for n vectors, so m′ = O(log(n)/ε2), then:

1 W = S1A; //compute sketch

2 [Q,R] = qr(W ); // change of basis

3 Z = A(R−1S2); // sketch of AR−1

4 return ‖Zi∗‖22 for i ∈ [n]
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Correctness

AR−1 has singular values in [1− ε, 1 + ε].
For all x, ‖AR−1x‖ = (1± ε)‖S1AR−1x‖ = (1± ε)‖Qx‖ = (1± ε)‖x‖
Let U be orthonormal with span(U) = span(A).

AR−1 is like U .

Pick T such that AR−1T = U .

T has singular values (1± ε).
For all x,
‖Tx‖ = ‖QTx‖ = ‖S1AR−1Tx‖ = (1± ε)‖AR−1Tx‖ = (1± ε)‖Ux‖ = (1± ε)‖x‖
Then T−1 has singular values (1± 2ε) for ε < 1/2.

Hence, our output ‖e>i AR−1S2‖2 = (1±O(ε))‖e>i U‖2.

‖e>i AR−1S2‖2 = (1± ε)‖e>i AR−1‖2 = (1± ε)‖e>i UT−1‖2

= (1± ε)(1± 2ε)‖e>i U‖2

UT Austin CSE 392/CS 395T/M 397C Feb, 2025 13 / 20



Correctness

AR−1 has singular values in [1− ε, 1 + ε].
For all x, ‖AR−1x‖ = (1± ε)‖S1AR−1x‖ = (1± ε)‖Qx‖ = (1± ε)‖x‖
Let U be orthonormal with span(U) = span(A).

AR−1 is like U .

Pick T such that AR−1T = U .

T has singular values (1± ε).

For all x,
‖Tx‖ = ‖QTx‖ = ‖S1AR−1Tx‖ = (1± ε)‖AR−1Tx‖ = (1± ε)‖Ux‖ = (1± ε)‖x‖
Then T−1 has singular values (1± 2ε) for ε < 1/2.

Hence, our output ‖e>i AR−1S2‖2 = (1±O(ε))‖e>i U‖2.

‖e>i AR−1S2‖2 = (1± ε)‖e>i AR−1‖2 = (1± ε)‖e>i UT−1‖2

= (1± ε)(1± 2ε)‖e>i U‖2

UT Austin CSE 392/CS 395T/M 397C Feb, 2025 13 / 20



Correctness

AR−1 has singular values in [1− ε, 1 + ε].
For all x, ‖AR−1x‖ = (1± ε)‖S1AR−1x‖ = (1± ε)‖Qx‖ = (1± ε)‖x‖
Let U be orthonormal with span(U) = span(A).

AR−1 is like U .

Pick T such that AR−1T = U .

T has singular values (1± ε).
For all x,
‖Tx‖ = ‖QTx‖ = ‖S1AR−1Tx‖ = (1± ε)‖AR−1Tx‖ = (1± ε)‖Ux‖ = (1± ε)‖x‖
Then T−1 has singular values (1± 2ε) for ε < 1/2.

Hence, our output ‖e>i AR−1S2‖2 = (1±O(ε))‖e>i U‖2.

‖e>i AR−1S2‖2 = (1± ε)‖e>i AR−1‖2 = (1± ε)‖e>i UT−1‖2

= (1± ε)(1± 2ε)‖e>i U‖2

UT Austin CSE 392/CS 395T/M 397C Feb, 2025 13 / 20



Correctness

AR−1 has singular values in [1− ε, 1 + ε].
For all x, ‖AR−1x‖ = (1± ε)‖S1AR−1x‖ = (1± ε)‖Qx‖ = (1± ε)‖x‖
Let U be orthonormal with span(U) = span(A).

AR−1 is like U .

Pick T such that AR−1T = U .

T has singular values (1± ε).
For all x,
‖Tx‖ = ‖QTx‖ = ‖S1AR−1Tx‖ = (1± ε)‖AR−1Tx‖ = (1± ε)‖Ux‖ = (1± ε)‖x‖
Then T−1 has singular values (1± 2ε) for ε < 1/2.

Hence, our output ‖e>i AR−1S2‖2 = (1±O(ε))‖e>i U‖2.

‖e>i AR−1S2‖2 = (1± ε)‖e>i AR−1‖2 = (1± ε)‖e>i UT−1‖2

= (1± ε)(1± 2ε)‖e>i U‖2

UT Austin CSE 392/CS 395T/M 397C Feb, 2025 13 / 20



Correctness

AR−1 has singular values in [1− ε, 1 + ε].
For all x, ‖AR−1x‖ = (1± ε)‖S1AR−1x‖ = (1± ε)‖Qx‖ = (1± ε)‖x‖
Let U be orthonormal with span(U) = span(A).

AR−1 is like U .

Pick T such that AR−1T = U .

T has singular values (1± ε).
For all x,
‖Tx‖ = ‖QTx‖ = ‖S1AR−1Tx‖ = (1± ε)‖AR−1Tx‖ = (1± ε)‖Ux‖ = (1± ε)‖x‖
Then T−1 has singular values (1± 2ε) for ε < 1/2.

Hence, our output ‖e>i AR−1S2‖2 = (1±O(ε))‖e>i U‖2.

‖e>i AR−1S2‖2 = (1± ε)‖e>i AR−1‖2 = (1± ε)‖e>i UT−1‖2

= (1± ε)(1± 2ε)‖e>i U‖2

UT Austin CSE 392/CS 395T/M 397C Feb, 2025 13 / 20



Computational cost

1 W = S1A; //O(nnz(A)s

2 [Q,R] = qr(W ); // O(d2m)

3 Z = A(R−1S2); // O(d2m′ + nnz(A)m′)

4 return ‖Zi∗‖22 for i ∈ [n] // O(nm′)

If A is dense, we use SRHT and fast JL.
If A is sparse, we can use OSNAP.
Total cost is :

O(nnz(A)(m′ + s) + d2(m+m′) = O((nnz(A) log n+ d3 log d)/ε2).

Further Reading:
Drineas, Petros, et al. “Fast approximation of matrix coherence and statistical leverage.” The Journal of
Machine Learning Research 13.1 (2012): 3475-3506.
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Preconditioning for least squares

Solving least squares regression exactly requires O(nd2 + d3) cost.

Using sketching or sampling : O((nnz(A) log n+ d3 log d)/ε).

However, we only get an approximate solution:

‖Ax̃− b‖2 ≤ (1 + ε)‖Ax∗ − b‖2

For machine precision regression, we need reduce the dependence on ε to logarithmic.

With iterative methods, such as the general class of Krylov or conjugate-gradient
type algorithms :

‖A(x(m) − x∗)‖2

‖A(x(0) − x∗)‖2
≤ 2

(√
κ(A>A)− 1√
κ(A>A) + 1

)m

.

So, need m = O(κ(A) log(1/ε)) to get an ε error.
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Preconditioning for least squares

Pre-conditioning reduces the number of iterations needed for a given accuracy.

Find a non-singular matrix R, such that κ((AR−1)>AR−1) is small.

Applying CG method to AR−1 would converge quickly.

Idea is similar to approximate leverage scores computation.

Apply a (sparse) subspace embedding matrix S to A.
Compute R as [Q,R] = qr(SA).
We know that AR−1 has singular values in[1− ε0, 1 + ε0] (almost orthonormal).

κ(AR−1) ≤ 1 + ε0
1− ε0

.

After m iterations of CG, we have: ‖AR−1(x(m) − x∗)‖2 ≤ 2εm0 ‖x∗‖2
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Iterative Refimenent

Given A ∈ Rn×d, b ∈ Rn, and a subspace ε0-embedding S ∈ Rm×n for A,

1 m = O(log(1/ε))

2 W = SA;

3 [Q,R] = qr(W );

4 x(0) ← 0;

5 for j = 0, 1, . . . ,m:

x(j+1) ← x(j) + (R>)−1A>(b−AR−1x(j))

6 return R−1x(m+1)

Cost:
For SRHT or OSNAP: O(nnz(A) log(n/ε) + d3 log2 d+ d2 log(1/ε))
For Countsketch: O((nnz(A) + d4) log(1/ε)).
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Sketch based preconditioning

Let x(j+1) ← x(j) + (R>)−1A>(b−AR−1x(j)).
We have

AR−1(x(j+1) − x∗) = AR−1
(
x(j) + (R>)−1A>(b−AR−1x(j))− x∗

)
=

=

where AR−1 = UΣV >. We know AR−1 has singular values in[1− ε0, 1 + ε0] .
So, diagonal entries of Σ− Σ3 are at most σi(1− (1− ε0)2) ≤ 3σiε0 for ε0 ≤ 1. Hence,

‖AR−1(x(m+1) − x∗)‖ ≤ 3ε0‖AR−1(x(m) − x∗)‖

and by choosing ε0 = 1/2, say, O(log(1/ε)) iterations suffice to attain ε relative error.
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Further Reading

Avron, Haim, Petar Maymounkov, and Sivan Toledo. “Blendenpik: Supercharging
LAPACK’s least-squares solver.” SIAM Journal on Scientific Computing 32.3 (2010):
1217-1236.

Clarkson, Kenneth L., and David P. Woodruff. “Low-rank approximation and
regression in input sparsity time.” Journal of the ACM (JACM) 63.6 (2017): 1-45.
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Questions?

UT Austin CSE 392/CS 395T/M 397C Feb, 2025 20 / 20


	Sketch and solve - Proof
	Sampling for least squares
	Preconditioning for least squares

