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Lecture 1: Introduction and Overview
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Data Deluge

Modern applications involve large dimensional datasets (matrices and beyond!).

New technologies - generation and collection of large volumes of data in scientific, industrial,
and social domains.

Algorithms - Inexpensive, scalable; parallel and online/streaming.
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A Multi-Dimensional World

Much of real-world data is inherently multidimensional

Many operators and models are natively multi-way
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Algorithms for Data

Growing demands of data science and artificial intelligence and the need to handle
large and high dimensional data have ushered in a “new era” for algorithms research.

Today’s data problems are two folds:
I Computational issues in handling large and high dimensional data.
I Representational challenges in order to capture multi-dimensional correlation

structure.

Typical data applications require combining a diverse set of algorithmic tools. Most
are not heavily covered in traditional algorithms curriculum.
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Class topics

The class topics are divided into two parts:
1 Randomized matrix computations
2 Tensor algebraic methods

Randomized linear algebra - Approximate computational paradigm through the
interplay between statistics, algebra and geometry.

Tensor algebra - algebraic constructs that represent and manipulate natively
high-dimensional entities, while preserving their multi-dimensional integrity.

We will cover theory, Matlab/Python implementations, and applications.

Focus on the tools to design new algorithms.

Will need strong background in linear algebra and probability.
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Course Logistics

Course webpage:
https://shashankaubaru.github.io/Teaching/CSE392-2025.html

You will find all information related to the course.
Instructor: Shashanka Ubaru

Email: shashanka.ubaru@austin.utexas.edu or @ibm.com

Office hours: Wednesdays 1:30pm - 2:30pm.

Location: POB 3.134

Class time and Location:
Mondays and Wednesdays, 11:00am - 12:30pm, GDC 2.402.
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Class Logistics II

Syllabus, schedule, lecture notes and other information can all be found in the class
webpage.

Assignments are to be submitted through Canvas, and should be individual work.
You can discuss the problems, but should submit individually. Preferably typewritten.

The programming languages for the course will be Matlab and/or Python.

Some of the assignments and exercises will involve programming and code submission.

We will use Canvas for grades, submissions, etc.
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Class Logistics III

Grading:

Assignments - 50% : Around 4-5 problem sets each contributing an equal amount to the
grade. Will include programming exercises.

Class Project - 40% : There will be a final presentation of the projects during the last
week of the semester, along with proposal and final report submissions.

Participation- 10% : Participation in the class.

Relevant resources will be posted on the class webpage or canvas.
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Questions?
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This lecture

General Introduction

Background: Linear algebra and numerical linear algebra.

Mathematical background - vector spaces, matrices, rank.

Types of matrices, structured matrices.

eigenvalues, singular values.

Inner products, norms.
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Vector spaces and matrices

A vector subspace of Rn is a subset of Rn that is also a real vector space.

The set of all linear combinations of a set of vectors A = {a1,a2, . . . ,aq} of Rn is a
vector subspace called the linear span of A.

If the ai’s are linearly independent, then each vector of span(A) admits a unique
expression as a linear combination of the ai’s. The set A is then called a basis.

A matrix A ∈ Rm×n is an m× n array of real numbers

aij , i = 1, . . . ,m, j = 1, . . . , n.

A matrix represents a linear mapping between two vector spaces of finite dimension n
and m:

x ∈ Rn −→ y = Ax ∈ Rm

UT Austin CSE 392/CS 395T/M 397C Jan, 2025 13 / 31



Vector spaces and matrices

A vector subspace of Rn is a subset of Rn that is also a real vector space.

The set of all linear combinations of a set of vectors A = {a1,a2, . . . ,aq} of Rn is a
vector subspace called the linear span of A.

If the ai’s are linearly independent, then each vector of span(A) admits a unique
expression as a linear combination of the ai’s. The set A is then called a basis.

A matrix A ∈ Rm×n is an m× n array of real numbers

aij , i = 1, . . . ,m, j = 1, . . . , n.

A matrix represents a linear mapping between two vector spaces of finite dimension n
and m:

x ∈ Rn −→ y = Ax ∈ Rm

UT Austin CSE 392/CS 395T/M 397C Jan, 2025 13 / 31



Tensors

Notation : An1×n2...,×nd - dth order tensor
I 0th order tensor - scalar

I 1st order tensor - vector

I 2nd order tensor - matrix

I 3rd order tensor ...
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Matrix operations

Addition: C = A + B, where A,B,C ∈ Rm×n with

cij = aij + bij , i = 1, . . . ,m, j = 1, . . . , n.

Scalar multiplication: C = αA, where

cij = αaij , i = 1, . . . ,m, j = 1, . . . , n.

Matrix-matrix multiplication: C = AB, where A ∈ Rm×n,B ∈ Rn×p,C ∈ Rm×p
with

cij =

n∑
k=1

aikbkj , i = 1, . . . ,m, j = 1, . . . , p.
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Matrix operations

Transposition: C = A>, where A ∈ Rm×n,C ∈ Rn×m with

cij = aji, i = 1, . . . ,m, j = 1, . . . , n.

Transpose conjugate: for complex matrices

AH = Ā> = Ā>.

Kronecker product: For A ∈ Rm×n,B ∈ Rp×q

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

... · · · · · ·
...

am1B am2B · · · amnB


In Matlab and Numpy/Pytrorch: kron(A,B). Size = ??

UT Austin CSE 392/CS 395T/M 397C Jan, 2025 16 / 31



Questions and Exercises

(A>)> = ? (AB)> = ? (AH)H = ?
(AH)> = ? (ABC)> = ?

When is AA> = A>A?

What are the computational complexity of (a) matrix addition,
(b)matrix-vector product (matvec), and
(c) matrix-matrix product?

If u,v ∈ Rn, then what are the sizes of u>v and uv>?
What are these called?

Exercise 1: Show that for u,v ∈ Rn, we have v> ⊗ u = uv>.
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Range, rank, and null space

Range: Ran(A) = {Ax | x ∈ Rn} ⊆ Rm

Null Space: Null(A) = {x ∈ Rn |Ax = 0} ⊆ Rn

Range = linear span of the columns of A

Rank of a matrix rank(A) = dim(Ran(A)) ≤ n
Ran(A) ⊆ Rm → rank(A) ≤ m→

rank(A) ≤ min{m,n}.

rank(A) = number of linearly independent columns of A = number of linearly
independent rows of A.

A is of full rank if rank(A) = min{m,n}. Otherwise it is rank-deficient.
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Rank - Nullity Theorem

For A ∈ Rm×n:
dim(Ran(A)) + dim(Null(A)) = n

Also
dim(Ran(A>)) + dim(Null(A>)) = m

dim(Null(A)) is called the nullity or co-rank of A.

rank(A) + nullity(A) = n.

Question: If rank(A) = r, what are rank(A>), rank(Ā), rank(AH)?

Explore rank function in Matlab or Numpy (in PyTorch, linalg.matrix rank).
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Types of matrices

Orthonormal : U ∈ Rm×n is orthonormal if U>U = I.

If U is square, then it is orthogonal (or unitary if complex), and UU> = I.

A square matrix A ∈ Cn×n is,
Symmetric : A> = A, Skew-symmetric : A> = −A ,
Hermitian: AH = A, Skew-Hermitian : AH = −A, Normal: AHA = AAH .

Matrix is non-negative if aij ≥ 0, i, j = 1, . . . , n.

A symmetric matrix P of the form P = UU> is a projection matrix, and PP = P .

Structured matrices: Diagonal, Upper (U) and Lower (L) triangular, U & L
bidiagonal, tridiagonal, and U & L Hessenberg.

Special matrices: Toeplitz, Hankel, and circulant matrices.

Sparse matrices Many of the large matrices encountered in applications are sparse.
Sparse matrix computations can be a separate course.
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Reference

Recommended reading:
If these topics are not familiar, refer to sections 1.1 to 1.6 in Dr. Yousef Saad’s text book:

http://www.cs.umn.edu/~saad/eig_book_2ndEd.pdf.
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Eigenvalues and Eigenvectors

A complex scalar λ is called an eigenvalue of a square matrix A ∈ Cn×n if there exists a
nonzero vector u ∈ Cn such that

Au = λu.

The vector u is called an eigenvector of A associated with λ.

The set of all eigenvalues of A, denoted Λ(A), is the spectrum of A.

An eigenvalue is a root of the characteristic polynomial:

pA(λ) = det(A− λI)

Diagonalization: Two matrices A,B are similar if there exists a nonsingular
matrix X such that: A = XBX−1.
A is diagonalizable if it is similar to a diagonal matrix
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Eigenvalues and properties

For every square symmetric matrix A ∈ Rn×n, we can compute eigendecompostion:

A = UΛU>,

where U is an orthogonal matrix with eigenvectors ui as columns, and Λ is diagonal
matrix with eigenvalues λi on the diagonal.

Spectral radius: The maximum modulus of the eigenvalues

ρ(A) = max
λ∈Λ(A)

|λ|

Trace of A is the sum of diagonal elements

Tr(A) =

n∑
i=1

aii =

n∑
i=1

λi

sum of all the eigenvalues of A counted with their multiplicities.

Note det(A) = product of all the eigenvalues of A counted with their multiplicities.
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Singular values

Let A ∈ Rm×n or Cm×n.

The eigenvalues of AHA and AAH are real and ≥ 0.

Let σi =
√
λi(AHA) if n ≤ m

else σi =
√
λi(AAH) for i = 1, . . . ,min{n,m}.

These σi’s are called the singular values of A.

Singular value decomposition: For every matrix A ∈ Rm×n, we have

A = UΣV >,

where U ∈ Rm×m,V ∈ Rm×n are an orthogonal matrices , and Σ ∈ Rm×n is diagonal
matrix with singular values σi on the diagonal ordered non-increasingly:
σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0 .
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Questions and Exercises

Given a symmetric matrix A with eigen-decomposition A = UΛU>, then
1 What are the eigenvalues/eigenvectors of Aq for a given integer power q?
2 If A is nonsingular what are the eigenvalues/eigenvectors of A−1?
3 What are the eigenvalues/eigenvectors of p(A) for a polynomial p(·)?

Similarly, for a general matrix A ∈ Rn×d, with SVD A = UΣV >, what are the
eigen-values of A>A?
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Inner products and norms

Inner product of two vectors u,v ∈ Rn:

〈u,v〉 = u>v =

n∑
i=1

uivi

For complex numbers?

Given A ∈ Cm×n then,
〈Au,v〉 = 〈u,AHv〉.

Vector norm on a vector space X is a real-valued function on X, which satisfies the
following three conditions:

1. ‖x‖ ≥ 0, ∀x ∈ X, and ‖x‖ = 0 iff x = 0.
2. ‖αx‖ = |α|‖x‖, ∀x ∈ X,∀α ∈ C.
3. ‖x + y‖ ≤ ‖x‖+ ‖y‖, ∀x,y ∈ X.
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Vector norms

Euclidean norm on X = Cn ,

‖x‖2 = 〈x,x〉1/2 =

√√√√ n∑
i=1

|xi|2

Most common vector norms in numerical linear algebra: for p ≥ 1 (Hölder norms)

‖x‖p =

(∑
i

|xi|p
)1/p

Cauchy-Schwartz inequality:

|〈x,y〉| ≤ ‖x‖2‖y‖2
Hölder inequality:

|〈x,y〉| ≤ ‖x‖p‖y‖q,with
1

p
+

1

q
= 1.

UT Austin CSE 392/CS 395T/M 397C Jan, 2025 27 / 31



Matrix norms

Matrix norm by treating m× n matrices as vectors in Cmn:
1. ‖A‖ ≥ 0,∀A ∈ Cm×n, and ‖A‖ = 0 iff A = 0.
2. ‖αA‖ = |α|‖A‖, ∀x ∈ Cm×n, ∀α ∈ C.
3. ‖A + B‖ ≤ ‖A‖+ ‖B‖,∀A,B ∈ Cm×n.

Given A ∈ Cm×n, we define a set of matrix norms :

‖A‖p = max
x∈Cm,x6=0

‖Ax‖p
‖x‖p

Consistency / sub-mutiplicativity of matrix norms:

‖AB‖p ≤ ‖A‖p‖B‖p
Frobenius norm of a matrix:

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|aij |2.
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Expressions of standard matrix norms

Recall for a square matrix, we have
ρ(A) = maxλ∈Λ(A) |λ| and Tr(A) =

∑n
i=1 aii =

∑n
i=1 λi.

Then the matrix norms are:
‖A‖1 = maxj

∑m
i=1 |aij |,

‖A‖∞ = maxi
∑n

j=1 |aij |,
‖A‖2 = [ρ(AHA)]1/2 = [ρ(AAH)]1/2,
‖A‖F = [Tr(AHA)]1/2 = [Tr(AAH)]1/2.
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In terms of singular values

For A, assume we have r nonzero singular values (with r ≤ min{m,n}) :

σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

Then, we have

‖A‖2 = σ1 and ‖A‖F =

√√√√ r∑
i=1

σ2
i

Schatten p-norms for p ≥ 1

‖A‖∗,p =

[
r∑
i=1

σpi

]1/p

In particular: ‖A‖∗,1 =
∑r

i=1 σi is called the nuclear norm and is denoted by ‖A‖∗.

UT Austin CSE 392/CS 395T/M 397C Jan, 2025 30 / 31



Questions and Exercises

For an orthogonal matrix U , show that ‖Ux‖2 = ‖x‖2.

Exercise 2: Show that for any x: 1√
n
‖x‖1 ≤ ‖x‖2 ≤ ‖x‖1.

Exercise 3: Prove that the Frobenius norm is consistent [Hint: Use
Cauchy-Schwartz]

Let A = uv>. Then, ‖A‖2 = ‖u‖2‖v‖2.

Exercise 4: Prove the above.
What is ‖A‖F = ?
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