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Lecture 1: Introduction and Overview
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Outline

@ Class Topics and Logistics
© Introduction - Vector spaces and matrices

@ Eigenvalues and singular values

@ Vector and matrix norms




Data Deluge

@ Modern applications involve large dimensional datasets (matrices and beyond!).

@ New technologies - generation and collection of large volumes of data in scientific, industrial,
and social domains.

@ Algorithms - Inexpensive, scalable; parallel and online/streaming.
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A Multi-Dimensional World

@ Much of real-world data is inherently multidimensional

e Many operators and models are natively multi-way
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Algorithms for Data

e Growing demands of data science and artificial intelligence and the need to handle
large and high dimensional data have ushered in a “new era” for algorithms research.
e Today’s data problems are two folds:

» Computational issues in handling large and high dimensional data.
» Representational challenges in order to capture multi-dimensional correlation
structure.

e Typical data applications require combining a diverse set of algorithmic tools. Most
are not heavily covered in traditional algorithms curriculum.
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Class topics

@ The class topics are divided into two parts:

@ Randomized matrix computations

@ Tensor algebraic methods
Randomized linear algebra - Approximate computational paradigm through the
interplay between statistics, algebra and geometry.

Tensor algebra - algebraic constructs that represent and manipulate natively
high-dimensional entities, while preserving their multi-dimensional integrity.

e We will cover theory, Matlab/Python implementations, and applications.

Focus on the tools to design new algorithms.

Will need strong background in linear algebra and probability.

UT Austin CSE 392/CS 395T/M 397C Jan, 2025 7/31



Course Logistics

Course webpage:
https://shashankaubaru.github.io/Teaching/CSE392-2025.html
You will find all information related to the course.
Instructor: Shashanka Ubaru

@ FEmail: shashanka.ubaru@austin.utexas.edu or @ibm.com

o Office hours: Wednesdays 1:30pm - 2:30pm.

e Location: POB 3.134
Class time and Location:
Mondays and Wednesdays, 11:00am - 12:30pm, GDC 2.402.
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Class Logistics II

e Syllabus, schedule, lecture notes and other information can all be found in the class
webpage.

@ Assignments are to be submitted through Canvas, and should be individual work.
You can discuss the problems, but should submit individually. Preferably typewritten.

@ The programming languages for the course will be Matlab and/or Python.

e Some of the assignments and exercises will involve programming and code submission.

e We will use Canvas for grades, submissions, etc.
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Class Logistics I11

Grading:

@ Assignments - 50% : Around 4-5 problem sets each contributing an equal amount to the
grade. Will include programming exercises.

o Class Project - 40% : There will be a final presentation of the projects during the last
week of the semester, along with proposal and final report submissions.

@ Participation- 10% : Participation in the class.

Relevant resources will be posted on the class webpage or canvas.
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Questions?
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This lecture

General Introduction
e Background: Linear algebra and numerical linear algebra.
e Mathematical background - vector spaces, matrices, rank.

o Types of matrices, structured matrices.

eigenvalues, singular values.

Inner products, norms.
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Vector spaces and matrices

o A vector subspace of R” is a subset of R™ that is also a real vector space.

@ The set of all linear combinations of a set of vectors A = {a1,as,...,a4} of R" is a
vector subspace called the linear span of A.

o If the a;’s are linearly independent, then each vector of span(A) admits a unique
expression as a linear combination of the a;’s. The set A is then called a basis.
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Vector spaces and matrices

@ A vector subspace of R" is a subset of R™ that is also a real vector space.

@ The set of all linear combinations of a set of vectors A = {a1,as,...,a4} of R" is a
vector subspace called the linear span of A.

If the a;’s are linearly independent, then each vector of span(A) admits a unique
expression as a linear combination of the a;’s. The set A is then called a basis.

A matrix A € R™*™ is an m X n array of real numbers
aij, t=1,....,m, j=1,...,n

@ A matrix represents a linear mapping between two vector spaces of finite dimension n
and m:
zeR" —y=Ax cR™
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Tensors

e Notation : A"1*"2-Xna _ Jth grder tensor

» 0" order tensor - scalar

» 1%t order tensor - vector

» 274 grder tensor - matrix

» 374 order tensor ...




Matrix operations

o Addition: C = A + B, where A, B,C € R™*" with
Cij = aijj +by;, i=1,...,m, j=1,...

e Scalar multiplication: C = oA, where
cij =aa;j, t=1,....m, j=1,...

e Matrix-matrix multiplication: C = AB, where A € R™*" B € R"*P C € R™*P
with

n
Cijzzaikbkj7 1=1,....m, j7=1,...,p.
k=1
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Matrix operations

e Transposition: C = AT, where A € R™*" C € R™™ with
cij=aj, t=1,...,m, j=1,...,n.
e Transpose conjugate: for complex matrices
A = AT = AT,

e Kronecker product: For A € R™*" B € RP*4

allB algB tee alnB

a1 B axpB --- a,B
A®B = . )

am B ameB -+ amnB

In Matlab and Numpy/Pytrorch: kron(A,B). Size = 77
Jan, 2025  16/31



Questions and Exercises

o (AT =72 (AB)T =7 (AMH =2
(AT =72 (ABC)" =7
o Whenis AAT = AT A?
e What are the computational complexity of (a) matrix addition,
(b)matrix-vector product (matvec), and
(¢) matrix-matrix product?
o If u,v € R”, then what are the sizes of ' v and uv'?
What are these called?
-

o Exercise 1: Show that for u,v € R", we have v! @ u =uv'.
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Range, rank, and null space

e Range: Ran(A) = {Ax |z ¢ R"} CR™

e Null Space: Null(A) = {x € R"| Az =0} CR"
e Range = linear span of the columns of A

e Rank of a matrix rank(A) = dim(Ran(A)) <n
e Ran(A) CR™ — rank(A) < m —

rank(A) < min{m,n}.

e rank(A) = number of linearly independent columns of A = number of linearly
independent rows of A.

A is of full rank if rank(A) = min{m,n}. Otherwise it is rank-deficient.
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Rank - Nullity Theorem

e For A € R™*™:
dim(Ran(A)) + dim(Null(A)) =n

Also
dim(Ran(A")) + dim(Null(A")) = m

e dim(Null(A)) is called the nullity or co-rank of A.
e rank(A) + nullity(A) = n.
Question: If rank(A) = r, what are rank(AT),rank(A), rank(A)?

Explore rank function in Matlab or Numpy (in PyTorch, 1inalg.matrix rank).
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Types of matrices

e Orthonormal : U € R™*" is orthonormal if UTU = I.
o If U is square, then it is orthogonal (or unitary if complex), and UU " = I.

@ A square matrix A € C"*"™ is,
Symmetric : AT = A, Skew-symmetric : A" = —A |
Hermitian: AY = A, Skew-Hermitian : A” = — A, Normal: A7A = AAH,
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Types of matrices

e Orthonormal : U € R™*" is orthonormal if U U = I.
o If U is square, then it is orthogonal (or unitary if complex), and UU " = I.
@ A square matrix A € C"*"™ is,
Symmetric : AT = A, Skew-symmetric : A" = —A |
Hermitian: AY = A, Skew-Hermitian : A” = — A, Normal: A7A = AAH,
e Matrix is non-negative if a;; > 0,4,5 = 1,...,n.
e A symmetric matrix P of the form P = UU " is a projection matrix, and PP = P.

e Structured matrices: Diagonal, Upper (U) and Lower (L) triangular, U & L
bidiagonal, tridiagonal, and U & L Hessenberg.

@ Special matrices: Toeplitz, Hankel, and circulant matrices.

e Sparse matrices Many of the large matrices encountered in applications are sparse.
Sparse matrix computations can be a separate course.
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Reference

Recommended reading:

If these topics are not familiar, refer to sections 1.1 to 1.6 in Dr. Yousef Saad’s text book:

http://www.cs.umn.edu/~saad/eig_book_2ndEd.pdf.

UT Austin
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Eigenvalues and Eigenvectors

A complex scalar A is called an eigenvalue of a square matrix A € C™*" if there exists a
nonzero vector u € C™ such that

Au = Au.
The vector u is called an eigenvector of A associated with .

e The set of all eigenvalues of A, denoted A(A), is the spectrum of A.

e An eigenvalue is a root of the characteristic polynomial:
pa(A) =det(A — \I)

e Diagonalization: Two matrices A, B are similar if there exists a nonsingular
matrix X such that: A = XBX !,

A is diagonalizable if it is similar to a diagonal matrix
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Eigenvalues and properties

e For every square symmetric matrix A € R™*™, we can compute eigendecompostion:

A=UANUT,

where U is an orthogonal matrix with eigenvectors u; as columns, and A is diagonal

matrix with eigenvalues A\; on the diagonal.
@ Spectral radius: The maximum modulus of the eigenvalues

A) = A
p(A) A?A?fi)' |

e Trace of A is the sum of diagonal elements

n n

TI‘(A) = Z Q43 — Z )\i

i=1 i=1

sum of all the eigenvalues of A counted with their multiplicities.

e Note det(A) = product of all the eigenvalues of A counted with their multiplicities.
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Singular values

o Let A € R™*™ or C™*™.
o The eigenvalues of A” A and AAH are real and > 0.
° Letm:\/mifngm
else 0; = /Ni(AAH) for i = 1,..., min{n, m}.
@ These 0;’s are called the singular values of A.

Singular value decomposition: For every matrix A € R"™*", we have
A=UxV',
where U € R™*™ 'V € R™*™ are an orthogonal matrices , and ¥ € R™*"™ is diagonal

matrix with singular values o; on the diagonal ordered non-increasingly:
01202220, 20.
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Questions and Exercises

o Given a symmetric matrix A with eigen-decomposition A = UAU T, then

© What are the eigenvalues/eigenvectors of A? for a given integer power ¢?
@ If A is nonsingular what are the eigenvalues/eigenvectors of A=1?
© What are the eigenvalues/eigenvectors of p(A) for a polynomial p(-)?

o Similarly, for a general matrix A € R™*¢, with SVD A = UXV ", what are the
eigen-values of AT A?
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Inner products and norms

e Inner product of two vectors u,v € R™:
n
(u,v) =u'v= Zuwi
=1

e For complex numbers?

o Given A € C™*™ then,
(Au,v) = (u, Av).

@ Vector norm on a vector space X is a real-valued function on X, which satisfies the
following three conditions:
1. ||z|]| > 0,Vz € X, and ||z| =0 iff x = 0.
2. |laz| = |a|||z||, Ve € X,Va € C.
3. ||z +yl < Il + |yl Ve, y € X.
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Vector norms
e Euclidean norm on X =C" |

|z|lz = (2, 2)"/* =

e Most common vector norms in numerical linear algebra: for p > 1 (Hélder norms)

]l = (Z Iwi|p> "

(2

e Cauchy-Schwartz inequality:

[z, )| < llzll2llyll2
e Holder inequality:
1
q
Jan, 2025
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Matrix norms

e Matrix norm by treating m x n matrices as vectors in C™™:
1. |A|| > 0,YA € C™*" and ||A]| =0 iff A =0.
2. |laAl| = |a|||All, Y& € C™*" Vo € C.
3. |A+ BJ| < ||All + |B|, YA, B € C™*™.
o Given A € C™*" we define a set of matriz norms :
_ lAa),
xzeC™m, x+£0 ||m||p

| Allp =

e Consistency / sub-mutiplicativity of matrix norms:
IAB|, < [|Allp[| Bl

e Frobenius norm of a matrix:

|AllF =
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Expressions of standard matrix norms

@ Recall for a square matrix, we have
p(A) = maxyep(a) [Al and Tr(A) = 370 ai = 2510 i
@ Then the matrix norms are:
A1 = max; 3" [ail,
[Alloo = max; 3774 |agl,
A2 = [o(AT A))'/2 = [p(AAT)]1/2,
|A|lF = [Tr(A7 A)V/2 = [Tr(AAM)]'/2.
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In terms of singular values

e For A, assume we have r nonzero singular values (with » < min{m,n}) :
o1>092>-2>0,>0.
@ Then, we have

[Allz =01 and [ AllF =

@ Schatten p-norms for p > 1

T 1/p
Ay = [Z of]
=1

o In particular: ||Alls1 = ;_; 0; is called the nuclear norm and is denoted by ||A]l..
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Questions and Exercises

e For an orthogonal matrix U, show that |Ux||2 = ||z||2.

e Exercise 2: Show that for any x: \/LﬁHccHl < |lz|l2 < ||lz|1-

Exercise 3: Prove that the Frobenius norm is consistent [Hint: Use
Cauchy-Schwartz|

o Let A=wuv'. Then, ||Al2 = |Jul]2|v]2.

Exercise 4: Prove the above.
What is |Al|p = 7
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