CSE 392/CS 395T/M 397C: Matrix and Tensor Algorithms for Data

Instructor: Shashanka Ubaru

University of Texas, Austin Spring 2025

Lecture 1: Introduction and Overview

- Class Topics and Logistics
- 2 Introduction Vector spaces and matrices
- **3** Eigenvalues and singular values
- 4 Vector and matrix norms

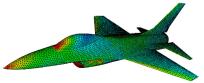
Data Deluge

- Modern applications involve *large dimensional datasets* (matrices and beyond!).
- New technologies generation and collection of *large volumes of data* in scientific, industrial, and social domains.
- Algorithms Inexpensive, scalable; parallel and online/streaming.

A Multi-Dimensional World

• Much of real-world data is inherently multidimensional

• Many operators and models are natively multi-way



Algorithms for Data

- Growing demands of data science and artificial intelligence and the need to handle *large and high dimensional* data have ushered in a "new era" for algorithms research.
- Today's *data problems* are two folds:
 - **Computational** issues in handling large and high dimensional data.
 - ▶ **Representational** challenges in order to capture multi-dimensional correlation structure.
- Typical data applications require combining a diverse set of algorithmic tools. Most are not heavily covered in traditional algorithms curriculum.

Class topics

- The class topics are divided into two parts:
 - **1** Randomized matrix computations
 - **2** Tensor algebraic methods
- *Randomized linear algebra* Approximate computational paradigm through the interplay between statistics, algebra and geometry.
- *Tensor algebra* algebraic constructs that represent and manipulate natively high-dimensional entities, while preserving their multi-dimensional integrity.
- We will cover theory, Matlab/Python implementations, and applications.
- Focus on the tools to design new algorithms.
- Will need strong background in *linear algebra* and *probability*.

Course Logistics

Course webpage: https://shashankaubaru.github.io/Teaching/CSE392-2025.html You will find all information related to the course. Instructor: Shashanka Ubaru

- Email: shashanka.ubaru@austin.utexas.edu or @ibm.com
- Office hours: Wednesdays 1:30pm 2:30pm.
- Location: POB 3.134

Class time and Location:

Mondays and Wednesdays, 11:00am - 12:30pm, GDC 2.402.

Class Logistics II

- Syllabus, schedule, lecture notes and other information can all be found in the *class webpage*.
- Assignments are to be submitted through Canvas, and should be individual work. You can discuss the problems, but should submit individually. Preferably typewritten.
- The programming languages for the course will be Matlab and/or Python.
- Some of the assignments and exercises will involve programming and code submission.
- We will use *Canvas* for grades, submissions, etc.

Grading:

- Assignments 50% : Around 4-5 problem sets each contributing an equal amount to the grade. Will include programming exercises.
- Class Project 40% : There will be a final presentation of the projects during the last week of the semester, along with proposal and final report submissions.
- **Participation-** 10% : Participation in the class.

Relevant resources will be posted on the class webpage or canvas.

Questions?

This lecture

General Introduction

- Background: Linear algebra and numerical linear algebra.
- Mathematical background vector spaces, matrices, rank.
- Types of matrices, structured matrices.
- eigenvalues, singular values.
- Inner products, norms.

Vector spaces and matrices

- A vector subspace of \mathbb{R}^n is a subset of \mathbb{R}^n that is also a real vector space.
- The set of all linear combinations of a set of vectors $\mathbb{A} = \{a_1, a_2, \dots, a_q\}$ of \mathbb{R}^n is a vector subspace called the linear span of \mathbb{A} .
- If the a_i 's are linearly independent, then each vector of span(A) admits a unique expression as a linear combination of the a_i 's. The set A is then called a *basis*.

Vector spaces and matrices

- A vector subspace of \mathbb{R}^n is a subset of \mathbb{R}^n that is also a real vector space.
- The set of all linear combinations of a set of vectors $\mathbb{A} = \{a_1, a_2, \dots, a_q\}$ of \mathbb{R}^n is a vector subspace called the linear span of \mathbb{A} .
- If the a_i 's are linearly independent, then each vector of span(A) admits a unique expression as a linear combination of the a_i 's. The set A is then called a *basis*.
- A matrix $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ is an $m \times n$ array of real numbers

$$a_{ij}, \quad i = 1, \dots, m, \quad j = 1, \dots, n.$$

• A matrix represents a linear mapping between two vector spaces of finite dimension n and m:

$$oldsymbol{x} \in \mathbb{R}^n \longrightarrow oldsymbol{y} = oldsymbol{A} oldsymbol{x} \in \mathbb{R}^m$$

Tensors

- Notation : $\mathcal{A}^{n_1 \times n_2 \dots \times n_d}$ d^{th} order tensor
 - $\blacktriangleright~0^{th}$ order tensor scalar
 - ▶ 1^{st} order tensor vector

▶ 2^{nd} order tensor - matrix

▶ 3^{rd} order tensor ...

Matrix operations

• Addition: C = A + B, where $A, B, C \in \mathbb{R}^{m \times n}$ with

$$c_{ij} = a_{ij} + b_{ij}, \quad i = 1, \dots, m, \quad j = 1, \dots, n.$$

• Scalar multiplication: $C = \alpha A$, where

$$c_{ij} = \alpha a_{ij}, \quad i = 1, \dots, m, \quad j = 1, \dots, n.$$

• Matrix-matrix multiplication: C = AB, where $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, $C \in \mathbb{R}^{m \times p}$ with

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}, \quad i = 1, \dots, m, \quad j = 1, \dots, p.$$

Matrix operations

• Transposition: $C = A^{\top}$, where $A \in \mathbb{R}^{m \times n}, C \in \mathbb{R}^{n \times m}$ with

$$c_{ij} = a_{ji}, \quad i = 1, \dots, m, \quad j = 1, \dots, n.$$

• Transpose conjugate: for complex matrices

$$oldsymbol{A}^{H}=ar{oldsymbol{A}}^{ op}=ar{oldsymbol{A}}^{ op}$$

• Kronecker product: For $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{p \times q}$

$$oldsymbol{A}\otimesoldsymbol{B}=egin{bmatrix} a_{11}oldsymbol{B}&a_{12}oldsymbol{B}&\cdots&a_{1n}oldsymbol{B}\ a_{21}oldsymbol{B}&a_{22}oldsymbol{B}&\cdots&a_{2n}oldsymbol{B}\ dots&\cdots&$$

In Matlab and Numpy/Pytrorch: kron(A,B). Size = ??

UT Austin

Questions and Exercises

•
$$(A^{\top})^{\top} = ?$$
 $(AB)^{\top} = ?$ $(A^{H})^{H} = ?$
 $(A^{H})^{\top} = ?$ $(ABC)^{\top} = ?$

- When is $AA^{\top} = A^{\top}A?$
- What are the computational complexity of (a) matrix addition, (b)matrix-vector product (matvec), and (c) matrix-matrix product?
- If $u, v \in \mathbb{R}^n$, then what are the sizes of $u^{\top}v$ and uv^{\top} ? What are these called?
- Exercise 1: Show that for $u, v \in \mathbb{R}^n$, we have $v^\top \otimes u = uv^\top$.

Range, rank, and null space

- Range: $\operatorname{Ran}(A) = \{Ax \mid x \in \mathbb{R}^n\} \subseteq \mathbb{R}^m$
- Null Space: Null(A) = { $x \in \mathbb{R}^n | Ax = 0$ } $\subseteq \mathbb{R}^n$
- Range = linear span of the columns of \boldsymbol{A}
- **Rank** of a matrix $\operatorname{rank}(\boldsymbol{A}) = \dim(\operatorname{Ran}(\boldsymbol{A})) \leq n$
- $\operatorname{Ran}(A) \subseteq \mathbb{R}^m \to \operatorname{rank}(A) \le m \to$

 $\operatorname{rank}(\boldsymbol{A}) \leq \min\{m, n\}.$

- rank(A) = number of linearly independent columns of A = number of linearly independent rows of A.
- A is of full rank if rank $(A) = \min\{m, n\}$. Otherwise it is rank-deficient.

Rank - Nullity Theorem

• For $A \in \mathbb{R}^{m \times n}$:

$$\dim(\operatorname{Ran}(\boldsymbol{A})) + \dim(\operatorname{Null}(\boldsymbol{A})) = n$$

Also

$$\dim(\operatorname{Ran}(\boldsymbol{A}^{\top})) + \dim(\operatorname{Null}(\boldsymbol{A}^{\top})) = m$$

- $\dim(\operatorname{Null}(A))$ is called the **nullity** or **co-rank** of A.
- $\operatorname{rank}(\mathbf{A}) + \operatorname{nullity}(\mathbf{A}) = n.$

Question: If rank $(\mathbf{A}) = r$, what are rank (\mathbf{A}^{\top}) , rank $(\bar{\mathbf{A}})$, rank (\mathbf{A}^{H}) ?

Explore rank function in Matlab or Numpy (in PyTorch, linalg.matrix_rank).

Types of matrices

- Orthonormal : $U \in \mathbb{R}^{m \times n}$ is orthonormal if $U^{\top}U = I$.
- If U is square, then it is orthogonal (or **unitary** if complex), and $UU^{\top} = I$.
- A square matrix A ∈ C^{n×n} is,
 Symmetric : A^T = A, Skew-symmetric : A^T = -A,
 Hermitian: A^H = A, Skew-Hermitian : A^H = -A, Normal: A^HA = AA^H.

Types of matrices

- Orthonormal : $U \in \mathbb{R}^{m \times n}$ is orthonormal if $U^{\top}U = I$.
- If U is square, then it is orthogonal (or **unitary** if complex), and $UU^{\top} = I$.
- A square matrix $A \in \mathbb{C}^{n \times n}$ is, Symmetric : $A^{\top} = A$, Skew-symmetric : $A^{\top} = -A$, Hermitian: $A^{H} = A$, Skew-Hermitian : $A^{H} = -A$, Normal: $A^{H}A = AA^{H}$.
- Matrix is non-negative if $a_{ij} \ge 0, i, j = 1, \dots, n$.
- A symmetric matrix P of the form $P = UU^{\top}$ is a projection matrix, and PP = P.
- Structured matrices: Diagonal, Upper (U) and Lower (L) triangular, U & L bidiagonal, tridiagonal, and U & L Hessenberg.
- Special matrices: Toeplitz, Hankel, and circulant matrices.
- **Sparse matrices** Many of the large matrices encountered in applications are sparse. Sparse matrix computations can be a separate course.

Reference

Recommended reading:

If these topics are not familiar, refer to sections 1.1 to 1.6 in Dr. Yousef Saad's text book:

http://www.cs.umn.edu/~saad/eig_book_2ndEd.pdf.

Eigenvalues and Eigenvectors

A complex scalar λ is called an *eigenvalue* of a square matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ if there exists a nonzero vector $\mathbf{u} \in \mathbb{C}^n$ such that

$$Au = \lambda u$$
.

The vector \boldsymbol{u} is called an *eigenvector* of \boldsymbol{A} associated with λ .

- The set of all eigenvalues of A, denoted $\Lambda(A)$, is the *spectrum* of A.
- An eigenvalue is a root of the *characteristic polynomial*:

$$p_{\boldsymbol{A}}(\lambda) = \det(\boldsymbol{A} - \lambda \boldsymbol{I})$$

• Diagonalization: Two matrices A, B are *similar* if there exists a nonsingular matrix X such that: $A = XBX^{-1}$.

 \boldsymbol{A} is diagonalizable if it is similar to a diagonal matrix

Eigenvalues and properties

• For every square symmetric matrix $A \in \mathbb{R}^{n \times n}$, we can compute eigendecomposition:

$$\boldsymbol{A} = \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{\top},$$

where U is an orthogonal matrix with eigenvectors u_i as columns, and Λ is diagonal matrix with eigenvalues λ_i on the diagonal.

• Spectral radius: The maximum modulus of the eigenvalues

$$ho(oldsymbol{A}) = \max_{\lambda \in \Lambda(oldsymbol{A})} |\lambda|$$

• **Trace** of A is the sum of diagonal elements

$$Tr(\boldsymbol{A}) = \sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} \lambda_i$$

sum of all the eigenvalues of \boldsymbol{A} counted with their multiplicities.

• Note $det(\mathbf{A}) =$ product of all the eigenvalues of \mathbf{A} counted with their multiplicities.

UT Austin

Singular values

- Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ or $\mathbb{C}^{m \times n}$.
- The eigenvalues of $A^H A$ and $A A^H$ are real and ≥ 0 .

• Let
$$\sigma_i = \sqrt{\lambda_i(\mathbf{A}^H \mathbf{A})}$$
 if $n \le m$
else $\sigma_i = \sqrt{\lambda_i(\mathbf{A}\mathbf{A}^H)}$ for $i = 1, \dots, \min\{n, m\}$.

• These σ_i 's are called the singular values of A.

Singular value decomposition: For every matrix $A \in \mathbb{R}^{m \times n}$, we have

$$\boldsymbol{A} = \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top},$$

where $\boldsymbol{U} \in \mathbb{R}^{m \times m}$, $\boldsymbol{V} \in \mathbb{R}^{m \times n}$ are an orthogonal matrices, and $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal matrix with singular values σ_i on the diagonal ordered non-increasingly: $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_m \geq 0$.

Questions and Exercises

- Given a symmetric matrix \boldsymbol{A} with eigen-decomposition $\boldsymbol{A} = \boldsymbol{U} \Lambda \boldsymbol{U}^{\top}$, then
 - **()** What are the eigenvalues/eigenvectors of A^q for a given integer power q?
 - 2) If A is nonsingular what are the eigenvalues/eigenvectors of A^{-1} ?
 - **③** What are the eigenvalues/eigenvectors of $p(\mathbf{A})$ for a polynomial $p(\cdot)$?
- Similarly, for a general matrix $A \in \mathbb{R}^{n \times d}$, with SVD $A = U \Sigma V^{\top}$, what are the eigen-values of $A^{\top} A$?

Inner products and norms

• Inner product of two vectors $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^n$:

$$\langle \boldsymbol{u}, \boldsymbol{v}
angle = \boldsymbol{u}^{ op} \boldsymbol{v} = \sum_{i=1}^n u_i v_i$$

- For complex numbers?
- Given $\boldsymbol{A} \in \mathbb{C}^{m \times n}$ then,

$$\langle \boldsymbol{A}\boldsymbol{u},\boldsymbol{v}\rangle = \langle \boldsymbol{u},\boldsymbol{A}^{H}\boldsymbol{v}\rangle.$$

• Vector norm on a vector space X is a real-valued function on X, which satisfies the following three conditions:

1.
$$\|\boldsymbol{x}\| \ge 0, \forall \boldsymbol{x} \in \mathbb{X}$$
, and $\|\boldsymbol{x}\| = 0$ iff $\boldsymbol{x} = 0$.
2. $\|\alpha \boldsymbol{x}\| = |\alpha| \|\boldsymbol{x}\|, \forall \boldsymbol{x} \in \mathbb{X}, \forall \alpha \in \mathbb{C}$.
3. $\|\boldsymbol{x} + \boldsymbol{y}\| \le \|\boldsymbol{x}\| + \|\boldsymbol{y}\|, \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{X}$.

Vector norms

• Euclidean norm on $\mathbb{X} = \mathbb{C}^n$,

$$\|\boldsymbol{x}\|_2 = \langle \boldsymbol{x}, \boldsymbol{x} \rangle^{1/2} = \sqrt{\sum_{i=1}^n |x_i|^2}$$

• Most common vector norms in numerical linear algebra: for $p \ge 1$ (Hölder norms)

$$\|m{x}\|_p = \left(\sum_i |x_i|^p\right)^{1/p}$$

• Cauchy-Schwartz inequality:

 $|\langle oldsymbol{x},oldsymbol{y}
angle|\leq \|oldsymbol{x}\|_2\|oldsymbol{y}\|_2$

• Hölder inequality:

$$|\langle oldsymbol{x},oldsymbol{y}
angle|\leq \|oldsymbol{x}\|_p\|oldsymbol{y}\|_q, ext{with}rac{1}{p}+rac{1}{q}=1.$$

UT Austin

Matrix norms

• Matrix norm by treating $m \times n$ matrices as vectors in \mathbb{C}^{mn} :

1.
$$\|\boldsymbol{A}\| \ge 0, \forall \boldsymbol{A} \in \mathbb{C}^{m \times n}$$
, and $\|\boldsymbol{A}\| = 0$ iff $\boldsymbol{A} = 0$.
2. $\|\alpha \boldsymbol{A}\| = |\alpha| \|\boldsymbol{A}\|, \forall \boldsymbol{x} \in \mathbb{C}^{m \times n}, \forall \alpha \in \mathbb{C}$.
3. $\|\boldsymbol{A} + \boldsymbol{B}\| \le \|\boldsymbol{A}\| + \|\boldsymbol{B}\|, \forall \boldsymbol{A}, \boldsymbol{B} \in \mathbb{C}^{m \times n}$.

• Given $A \in \mathbb{C}^{m \times n}$, we define a set of *matrix norms* :

$$\|oldsymbol{A}\|_p = \max_{oldsymbol{x}\in\mathbb{C}^m,oldsymbol{x}
eq 0} rac{\|oldsymbol{A}oldsymbol{x}\|_p}{\|oldsymbol{x}\|_p}$$

• Consistency / sub-mutiplicativity of matrix norms:

$$\|oldsymbol{A}oldsymbol{B}\|_p \leq \|oldsymbol{A}\|_p \|oldsymbol{B}\|_p$$

• Frobenius norm of a matrix:

$$\|A\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}.$$

Expressions of standard matrix norms

- Recall for a square matrix, we have $\rho(\mathbf{A}) = \max_{\lambda \in \Lambda(\mathbf{A})} |\lambda|$ and $\operatorname{Tr}(\mathbf{A}) = \sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} \lambda_i$.
- Then the matrix norms are:

$$\begin{split} \|\boldsymbol{A}\|_{1} &= \max_{j} \sum_{i=1}^{m} |a_{ij}|, \\ \|\boldsymbol{A}\|_{\infty} &= \max_{i} \sum_{j=1}^{n} |a_{ij}|, \\ \|\boldsymbol{A}\|_{2} &= [\rho(\boldsymbol{A}^{H}\boldsymbol{A})]^{1/2} = [\rho(\boldsymbol{A}\boldsymbol{A}^{H})]^{1/2}, \\ \|\boldsymbol{A}\|_{F} &= [\operatorname{Tr}(\boldsymbol{A}^{H}\boldsymbol{A})]^{1/2} = [\operatorname{Tr}(\boldsymbol{A}\boldsymbol{A}^{H})]^{1/2}. \end{split}$$

In terms of singular values

• For A, assume we have r nonzero singular values (with $r \leq \min\{m, n\}$):

$$\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0.$$

• Then, we have

$$\|oldsymbol{A}\|_2 = \sigma_1 \quad ext{and} \quad \|oldsymbol{A}\|_F = \sqrt{\sum_{i=1}^r \sigma_i^2}$$

• Schatten *p*-norms for $p \ge 1$

$$\|oldsymbol{A}\|_{*,p} = \left[\sum_{i=1}^r \sigma_i^p
ight]^{1/p}$$

• In particular: $\|\mathbf{A}\|_{*,1} = \sum_{i=1}^{r} \sigma_i$ is called the **nuclear norm** and is denoted by $\|\mathbf{A}\|_{*}$.

UT Austin

Questions and Exercises

- For an orthogonal matrix U, show that $||Ux||_2 = ||x||_2$.
- Exercise 2: Show that for any \boldsymbol{x} : $\frac{1}{\sqrt{n}} \|\boldsymbol{x}\|_1 \le \|\boldsymbol{x}\|_2 \le \|\boldsymbol{x}\|_1$.
- Exercise 3: Prove that the Frobenius norm is consistent [Hint: Use Cauchy-Schwartz]
- Let $A = uv^{\top}$. Then, $||A||_2 = ||u||_2 ||v||_2$.
- Exercise 4: Prove the above. What is $\|A\|_F = ?$