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Abstract

With the ever growing collection of large volumes of scientific data, development of interpretable machine learn-
ing tools to analyze such data is becoming more important. However, robust, interpretable machine learning tools
are lacking, threatening extraction of scientific insight and discovery. Nonnegative Matrix Factorization (NMF) al-
gorithms decompose an m × n nonnegative data matrix A into a k × n basis matrix H and an m × k weight
matrix W , such that A ≈ WH , where k is the desired rank. In this paper, we present a novel two stage algorithm,
UoI-NMFcluster for NMF, which is based on three innovations: (i) completely separate bases (H) learning from
weight (W ) estimation, (ii) learn bases (H) by clustering NMF results across bootstrap resamples of the data, and (iii)
use the recently introduced Union of Intersections (UoI) framework to estimate ultra-sparse weights (W ) that max-
imize data reconstruction accuracy. We deploy our algorithm on various synthetic and scientific data to illustrate its
performance, with a focus on neuroscience data. Compared to other NMF algorithms, UoI-NMFcluster yields: a)
more accurate parts-based decompositions of noisy data, b) a sparse and accurate weight matrix, and c) high-accuracy
reconstructions of the de-noised data. Together, these improvements enhance the performance and interpretability of
NMF application to noisy data, and suggest similar approaches may benefit other matrix decomposition algorithms.

1 Introduction
In many scientific fields, the development of new sensing and imaging technologies has resulted in generation of
large volumes of data. These large datasets bring with them opportunities of new discoveries and insights into the
fundamentals of nature. In order to realize such opportunities, development of novel machine learning and statistical
data analysis methods is necessary. Statistical-machine learning algorithms for scientific data should satisfy the bi-
criteria of returning results that are simultaneously predictive and interpretable. By predictive, we mean that it can
predict (e.g., reconstruct) the data with high accuracy; by interpretable, we mean that the results give insight into
the (bio)-physical processes that generated the data. Interpretability usually entails the sparse selection and accurate
estimation of a small number of physically meaningful features of the data. However, these bi-criteria are often at
odds, and methods that robustly (few assumptions on the data/noise) achieve both are lacking. Such methods could
provide insights into natural phenomena through the extraction of physically or biologically interpretable models.

Dimensionality reduction and low rank approximations/ decompositions are popular tools used in many applica-
tions to analyze high dimensional data. However, methods such as principal component analysis (PCA) often yield
uninterpretable results, as the eigenvectors can be additive combinations of up to all the data features. Alternate matrix
decomposition methods such as Nonnegative Matrix Factorization (NMF) and CUR decomposition have been shown
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to perform well in some scientific applications [25, 26]. In this work, we develop a novel NMF algorithm and deploy
it on scientific data from neuroscience and analytical chemistry to extract interpretable features.

Since its popularization, NMF [17] has been used in many applications for obtaining interpretable decompositions
of data. Given a matrix A ∈ Rm×n

+ (R+ represents the positive orthant), where each row of A corresponds to a data
point in Rn

+, and a rank k, the problem of NMF is to compute the matrices W ∈ Rm×k
+ and H ∈ Rk×n

+ , such that
A ≈WH . This problem is generally posed as a non-convex optimization problem,

min
W≥0,H≥0

‖A−WH‖F . (1)

Here, the rows of H form the basis of the objects (say images), and the rows of W are the encoding of the basis in A.
Since both W and H are nonnegative, NMF sometimes gives more interpretable parts based decompositions, with the
intuitive notion of “combining parts to form a whole” [17].

Several algorithms to solve the NMF problem have been developed to achieve various objectives, such as more
interpretable results, sparser solutions, unique solutions, etc. Sparse NMF [12, 13, 14] and convolutional NMF [2, 22]
are two popular variants of NMF. It has been claimed that NMF implicitly yields a sparse representation of the data.
However, in order to obtain explicit sparse NMF solutions, the following objective function is popularly used:

min
W≥0,H≥0

1

2

‖A−WH‖2F + λ1‖W‖2F + λ2

k∑
j=1

‖H(j, :)‖2p


with p = {0, 1} (promotes sparsity), λ1 and λ2 are regularization parameters. Algorithms to solve this problem are
discussed in [12, 13, 14].

The uniqueness of the solutions obtained by NMF was first discussed in [7], using a geometric interpretation of
NMF with simplicial cones. The separability of data was shown to be the key required property for unique solutions
for NMF. Uniqueness of NMF is also discussed in [15, 10, 1] and many other works. Article [9] showed that subset
separability of data is sufficient for obtaining unique solutions for NMF. We discuss more on the uniqueness of NMF
in sec. 3.1. Recently, [4] discussed NMF under heavy noise for topic modeling. That article proposes a new NMF
algorithm for noisy data and shows uniqueness of the solution obtained.

However, almost all NMF algorithms with theoretical guarantees make strong assumptions on the type of input data
(separable and subset separable conditions) and on the noise. Such assumptions are hard to check and these algorithms
may not be practically useful for scientific data, where the data need not be separable and the noise distribution is likely
unknown. Moreover, most existing algorithms fail to give stable interpretable bases when the input data has high noise.
In particular, when the data has noise, solving the non-convex optimization is problematic, as different starting points
yield different results, and thus unstable bases. So, while these methods minimize an objective function related to
the reconstruction error, and hence sometimes give good prediction quality, they generally do not yield accurate parts
based decompositions of the data generation process. This clearly has negative consequences for interpretability, an
admittedly not completely-well-defined property of algorithms that is crucial in many scientific applications. Thus,
alternate approaches need to be explored.

Our Contribution In this paper, we present a novel, noise-robust NMF algorithm (UoI-NMFcluster) that gives
more accurate parts based decompositions and sparser weight matrices with improved reconstruction of denoised data.
UoI-NMFcluster is inspired by the Union of Intersections (UoI) framework [5], and incorporates three innovations:
(i) completely separate bases (H) learning from weight (W ) estimation, (ii) learn bases (H) by clustering NMF
results across bootstrap resamples of the data, and (iii) use UoI to estimate ultra-sparse weights (W ) to maximize data
reconstruction accuracy.

UoI-NMFcluster is a two stage algorithm which computes sets of bases over bootstrap resamples of the data using
a standard NMF algorithm, and clusters the bases to learn the best stable and uncorrelated set of k bases. The algorithm
then directly uses UoI applied to the non-negative least squares problem to compute a sparse weight matrix that best
reconstructs the original input data given the selected bases. Using this two stage process, our method ensembles
different models (bases), selects the stable bases using clustering, and achieves sparse, low-variance solutions (weights
W in our case) without imposing a prior, see [5] for the discussion.
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The goal of UoI-NMFcluster is not to solve a single optimization problem to obtain a single NMF, but to extract
stable bases and learn sparse weights that map these bases to the data with high accuracy. Our algorithm has some
resemblance to popular ensemble methods [6], which improve prediction accuracy by combining different models
(parameter estimates). However, ensemble methods often include more features (expand the feature space) to predict
the response variables, which make them hard to interpret [5]. UoI-NMFcluster generates a bootstrapped ensemble
of potential bases, and uses clustering to extract uncorrelated bases that are stable to the bootstrap procedure. It then
selects few bases (i.e., sparse model selection) and uses bagging to estimate their contributions (W ) without imposing
an explicit prior on the weight distribution, thus giving low-bias and low-variance estimates. Through this approach,
we find that UoI-NMFcluster learns interpretable and predictive structure from complex, noisy data.

In the following, we discuss the uniqueness of the bases learned by clustering NMF bases utilizing geometric
interpretations, see section 3.1. We show how a stability criterion proposed in [25] can be naturally incorporated
into our bootstrap resampling approach to select the best nonnegative rank k. Numerical experiments with various
synthetic and scientific data illustrate the performance of the proposed algorithm relative to other approaches.

2 Preliminaries
In this section, we discuss the conceptual framework that lays the foundation for UoI-NMFcluster.

Union of Intersections Union of Intersections (UoI) is a recently introduced flexible, modular, and scalable frame-
work for statistical-machine learning problems [5]. The core concept of the UoI framework is to separate feature
selection from feature estimation, and use bootstrap resampling to determine stable features and estimate the parame-
ter values for those features to maximize predictive accuracy. In UoI-based methods, model selection is first performed
through intersection (compressive) operations which induce sparsity, followed by model estimation through union (ex-
pansive) operations which reduces the variance of estimates.

For example, consider the regression problem with `1 regularization: Given the data (Y1, X1), . . . , (Yn, Xn), with
univariate response Y and p-dimensional predictor variable X , we wish to minimize

L(β, λ) = ‖Y −Xβ‖22 + λ‖β‖1.

In theUoILasso algorithm, we (1) calculate model supports (Sj) (location of nonzero entries of β) using an intersection
operation across different bootstrap resamples of the data for a range of regularization parameters (λ: increases in
λ shrink all values of β towards 0), constructing a family of model supports [S : Sj ⊂ Sj−k for ∆λ = λj −
λj−k sufficiently large]; (2) combine the pure model selection (obtained from the intersection operation) with model
estimation using a union operation to obtain better selection, estimation and prediction accuracy. Further details on
the UoILasso algorithm can be found in [5]. Here, we adapt this framework to the NMF problem by separating the
feature (i.e., bases: H) learning/selection from the weight estimation (W ). Additionally, we use UoI for solving a
non-negative least-squares problem to determine sparse weight matrix W once the best basis H is computed.

NMF algorithms Several optimization algorithms have been proposed for solving the NMF problem (1). For ex-
ample, the multiplicative algorithm [18], alternating least squares (ALS) [3], Projected gradient [19], and alternating
direction method of multipliers (ADMM) [24] methods. Polynomial time algorithms with provable error bounds have
also been developed, but require separability assumption and certain assumptions on noise [1, 9, 4]. For a compre-
hensive survey on NMF algorithms and applications, we refer to [11]. In almost all of these NMF algorithms, the
basis matrix H and the coefficient matrix W are typically updated in an alternating fashion. This contrasts with our
approach to first learn the bases, and then estimate the weights to maximize reconstruction accuracy (note that our
goal is not to solve the optimization problem, but to extract stable interpretable representations).

The Euclidean distance minimization problem is unnatural for nonnegative data, since Euclidean distance assumes
Gaussian type distribution, which is unlikely to be the case with nonnegative data. Hence, a KL-divergence type error
metric, such as relative entropy D(A‖B), where B = WH , given by,

D(A‖B) =
∑
ij

(
Aij log

Aij

Bij
−Aij +Bij

)
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has been proposed by [18], where a multiplicative first order method to solve the new KL-divergence optimization
problem is provided (and which we will use). The new optimization problem can be viewed as the minimization of
entropy instead of energy, which enhances the sparsity of the solution.

Stability Criterion Similar to approaches for clustering (‘Consensus Clustering’), a stability-driven model selec-
tion criterion was recently proposed in [25] for NMF. For stability measurement and model selection, the following
dissimilarity measure based on the cross correlation matrix C between two basis matrix H and H ′ is used:

diss(H,H ′) =
1

2k

2k −
k∑

j=1

max
i
Cij −

k∑
i=1

max
j
Cij

 . (2)

The idea in [25] is to compute multiple sets of bases H using NMF with different initial conditions and a range of
rank k. Then compute the above dissimilarity measure for each pair of bases (H,H ′) and each rank k, and choose
the rank k that achieves lowest instability (sum of diss) as the optimal rank. Thus, [25] innovated the selection of k
based on the stability of bases from different initializations of a basic NMF algorithm, but returns the results of the
basic NMF with best reconstruction accuracy for the selected k. However, as discussed below, when the data is noisy,
it is unlikely that any single NMF result will contain the actual parts-based decomposition of the data (see Supplement
for examples). In contrast, UoI-NMFcluster uses bootstrap resampling to form a large set of potential NMF bases,
and cluster these bases so as to find the stable decomposition (bases) of the data, and then use UoI to estimate their
contributions in data reconstruction.

3 UoI-NMFcluster
Notation The input matrix A is assumed to be of size m × n with m data points in Rn, is decomposed into a basis
matrix H ∈ Rk×n with k rows and a weight matrix W ∈ Rm×k. We denote the output of UoI-NMFcluster by Ĥ, Ŵ
of best rank k̂. The different sets of NMFs obtained for different bootstraps are denoted by the pairs {Wi, Hi}B1

i=1,
where B1 is the number of bootstrap samples used. The set of integers 1, . . . , n is denoted by [n]. A matrix that
contains the indices of the nonzero entries of W is denoted by Widx. For a given rank k1, the matrix where the basis
matrices {Hi}B1

i=1 are stacked up is denoted by H̃(k1).
The UoI-NMFcluster algorithm is as follows:

Bases Learning We compute the matrices Hi and Wi for different bootstrap samples of the data i = 1, . . . , B1, and
for different ranks k using a standard NMF algorithm. The multiplicative update algorithm [18] for the KL divergence
error metric gave us the best results (any other NMF algorithm can also be used). The next step is to learn the best
basis matrix Ĥ from all the sets of bases {Hi}B1

i=1 learned over different bootstraps. The objective is to learn a set of
bases that are stable parts based decomposition of the data.

We make the observation that bases which are stable, i.e., similar bases (near duplicates) that appear from different
bootstrap samples are individual parts of the data, and are close to each other spatially (are dense points in the spatial
distributions). Also, different parts of the data are dissimilar and must be apart from each other spatially. Intuitively,
one part should be different than other parts. That is, the dense clusters formed by similar bases must be well separated.
This is indeed true for separable data/NMF where the bases are separable (see section 3.1 for details). The noisy or
spurious bases learned will be different for each bootstrap samples and these are typically spread out spatially. Hence,
in order to learn a stable parts based decomposition of the data, i.e., extract the stable (similar) bases from the set of
bases learned over different bootstraps, and ignore the noisy and spurious bases, we employ the popular robust density
based clustering algorithm called DBSCAN (Density Based Spatial Clustering of Applications with Noise) [8].

We cluster the k · B1 bases learned over different bootstraps using the DBSCAN algorithm. The DBSCAN algo-
rithm has two parameters, namely, the threshold Eps and the least minimum number of points per cluster (MinPts).
We choose MinPts ≈ B1/2 because the stable bases should be learned for at-least half of the bootstrap samples.
The threshold Eps can be chosen using the strategy proposed in [8]. The algorithm naturally clusters spatially dense
points into individual clusters, hence, similar (stable) parts based bases which are spatially dense, are grouped into
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Algorithm 1 UoI-NMFcluster

Input: Data A ∈ Rm×n
+ , minimum and maximum ranks kmin, kmax, and number of bootstrap resamples, B1, B2.

Output: Ŵ ∈ Rm×k̂
+ and Ĥ ∈ Rk̂×n

+ .
1. Bases Learning and Selection
for k1 = kmin to kmax. do

for i = 1 to B1. do
i) Generate rid ∈ [n] random indices.
ii) [Hi,Wi] = NMFKL(A(rid, :), k1).
iii) Rid(:, i) = rid; H̃(k1) = [H̃(k1);Hi].

end for
end for
If (kmax − kmin) > 0, Compute diss(H(k1)

i , H
(k1)
j ) and Γ(k1) and choose the best rank k̂.

1a) Choose the best set of bases
1. Cluster the stacked matrix H̃(k̂) using DBSCAN.
2. Set centers of the clusters as new best bases set Ĥ .
1b) Update weights and intersection of supports
Recompute {Wi}B1

i=1 wrt. Ĥ using NNLS.
for l = 1 to n do

[r, c] = find(Rid = l).
For all r, intersect the support of rows of W[r] and save in Widx.

end for
2. Weight Estimation
for i = 1 to B2 do

Generate new r′id ∈ [n] random indices.
for l = 1 to LEN(r′id). do
widx = Widx(r′id(l));
Compute widx entries of {Wi}B1

i=1 using NNLS.
end for

end for
Ŵ = entrywise-mean({Wi}B1

i=1).

different clusters. The algorithm leaves out all noisy points (points not within the Eps-neighborhood of a cluster)
without assigning them to a group. Therefore, the clusters we obtain for DBSCAN have only similar (stable) parts
based bases. We choose the centers of these clusters as the best (stable) bases Ĥ .

The best rank k can be computed using the dissimilarity measure given in (2) proposed in [25]. For each rank k, we
can compute diss(Hi, Hj) for each pair of bases learned over different bootstraps. Next, we compute the discrepancy
of all B1 bases as:

Γ(k) =
2

B1(B1 − 1)

∑
1≤i≤j≤s

diss(Hi, Hj).

Then, select the best k that achieves a small Γ(k).

Bases Selection and Weight Estimation Once the best bases Ĥ is learned, we next update/recompute the weight
matrices {Wi}B1

i=1 based on Ĥ . We use the same UoI strategy as in UoILasso (UoI for `1 regression described above)
for intersecting the supports (intersect the location of nonzeros) of each rows of the weights based on new {Wi}B1

i=1’s
estimated over bootstrap samples.

First, for selection, we compute a new weight matrix Wi for each bootstrap sample i = 1, . . . , B1, using Ĥ and
the nonnegative least squares (NNLS) or nonnegative LASSO regression method. For each row of weights, we then
compute the intersection of the support over all bootstrap samples in which this row was considered. This gives us a
sparse index matrix Widx with the intersected support of each row of {Wi}B1

i=1 over different bootstraps.
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Figure 1: 2D visualization of clusters of bases

Next, for estimation, we consider a new set of bootstrap samples (B2) and use bagging to comput the weights of
the output coefficient matrix Ŵ . We use the sparse coefficient index matrix Widx, the best basis Ĥ , and NNLS to
compute the rows of new Wi over B2 bootstrap samples. For each row of Wi, for all bootstrap samples in which this
row is considered, we employ NNLS to compute the weights of the coefficient whose indices are in the rows of Widx.
The mean of the weights the across bootstrap samples is chosen as the optimal estimate of the weights, Ŵ , which will
be sparse (because Widx is sparse), and have low-bias (no explicit regularization) and low-variance (from bagging).

Algorithm 1 describes our UoI-NMFcluster algorithm. The algorithm can be modified for other NMF variants and
other methods for clustering (see supplementary).

3.1 Geometric interpretation and uniqueness
In this section, we present the theoretical intuition to use clustering across bases learned from bootstrap samples to
obtain more stable parts based decompositions. The uniqueness of the solutions to the NMF problem was discussed
in [7], using a geometric interpretation of NMF with simplicial cones.

Geometric Interpretation: There is an unknown H-simplex whose vertices are the rows of H ∈ Rk×n
+ . We

observe m points A ∈ Rm×n
+ that lie in the H-simplex. The goal is to identify the vertices of the H-simplex.

An important observation in [7, 9] is that, if the input data points come from a simplex (without loss of generality),
the bases learned by an NMF algorithm will be the vertices of this simplex (non-overlapping bases with separated
supports). In this case, the data is called “separable”.

Separability: A NMF is separable if all the vertices H(j, :)’s appear in the observed points A(i, :)’s.
The separability of data was shown to be the key required property for unique solutions for NMF. Polynomial time

algorithms have been proposed to find these vertices [1]. Article [9] showed that subset separability of data (a milder
condition of separability) is sufficient for obtaining unique solutions.

A NMF algorithm will return a unique solution (learn the vertices) when the data are separable (uniqueness guar-
antees are shown in the literature only when the NMF is separable or subset separable). However, such separability
conditions are hard to test, and are unlikely to hold when the data are noisy. If the data are from a simplex with added
noise, the NMF algorithms may learn some of the simplex vertices as bases, along with the noise learned as one or
more additional bases, because NMF is an additive model. We show in our numerical experiments that basic NMF
algorithms indeed learn a few of these pure bases (vertices) and other bases are related to noise.

Generating bases from multiple bootstrap samples makes it likely that all the simplical vertices will be present with
in the superset of bases, i.e., rows of H̃ will likely have many points near the vertices (the ’parts’ bases) which are
dense spatially, and a few other noisy points related to noisy bases. The noisy bases are widespread and unlikely to be
near the vertices. Hence, density based clustering across all the points and using the centroids will give us the vertices
of the simplex. DBSCAN ignores the few noisy points that are spread out. Figure 1 gives a 2D visualization obtained
by tSNE algorithm [20], of the clustered (spatial) distribution of bases learned over different bootstrap samples for the
Swimmer dataset, described in the next section. The colors indicate the clusters assigned by the DBSCAN algorithm
with red depicting noise points. Therefore, for separable data with noise, using density based clustering and extracting
the cluster centroids will likely return the vertices of the simplex, i.e., the stable part based bases.
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Figure 2: UoI-NMFcluster for noisy Swimmer data. First 4× 4 images: 16 bases learned by UoI-NMFcluster for the
high noise Swimmer data. Second 4 × 4 images: The nonzero pattern of the sparse weights learned for randomly
chosen 16 images. Third 4× 4 images: The recovered images. Bottom 4× 4 images: The original noisy input images.

4 Numerical Experiments on Synthetic Data
In this section, we illustrate the performance of our proposed algorithm on various synthetic datasets. We compare
UoI-NMFcluster (with B1 = 20 and B2 = 10, see Supplement for varying B1) to basic NMF (using ALS with mul-
tiple initial conditions), sparse NMF (as implemented by SPAMS library), and TSVDNMF. For basic NMF, we used
multiple starting matrices [H,W ], and for sparse NMF, we used different parameters λ incrementally, and reported
the best results. We find that UoI-NMFcluster yields parts-based, noise-free bases, and thus reconstructions obtained
are also noiseless (denoised data).

Swimmer Dataset In the first experiment, we consider the swimmer dataset [7], the canonical example of separable
data: each image can be reconstructed from a subset of non-overlapping bases. We compared the performance of
UoI-NMFcluster against other NMF algorithms with multiple random initial conditions for the swimmer dataset
corrupted by heavy additive noise (Absolute Gaussian noise, |N (0, 0.25)|, see Supplement for varying noise levels).
The dataset contains 256 images of size 32 × 32 each. We concatenated 10 noisy sets of these 256 images (2560 in
total) as the input matrix (of size 2560× 1024).

Figure 6 illustrates the performance of UoI-NMFcluster algorithm on this noisy data. The first 4 × 4 images of
the figure show the 16 bases (parts) learned by UoI-NMFcluster. The second set (4 × 4 images) displays the sparse
weights estimated to reconstruct 16 randomly chosen images. The third set depicts the recovered images Â = Ŵ Ĥ ,
and the last 4 × 4 image set gives the original noisy input images A. The bases learned by other NMF algorithms
(basic NMF, sparse NMF and TSVDNMF [4]) are given in the supplementary.

The resulting bases from UoI-NMFcluster are remarkably good parts based decompositions of the denoised data,
even though the input matrix had very high noise. We see that UoI-NMFcluster learns all the 16 bases (parts) almost
exactly. Thus, for data generated from bases that are vertices of a simplex, our algorithm yields the unique solution
that exists, even when the observed data is highly noisy, and hence not separable. The 2D visualization of the spatial
distribution of the bases and how DBSCAN clusters the 16 parts based bases of the data in Fig. 1. We also observe that
the weights learned are sparse due to the intersection operation of UoI, resulting in the algorithm choosing only bases
that are relevant for the reconstruction of the original data. The nonzero patterns of the weights given in Fig. 6 shows
that exactly four bases are chosen for reconstruction for all the images. We clearly see that the recovered images are
denoised versions of the noise corrupted input images. When the input data are noisy, most basic NMF algorithms
tend to learn the noise as a separate bases (due to the additive nature of the factorization). The median nonzeros per
row in Ŵ for UoI-NMFcluster was 4 and in Ĥ was 22. The average mean squared error (MSE) between the exact
and the learned bases was just 0.0015, and the reconstruction errors ‖A − Ŵ Ĥ‖F for noisy data was 195.1 and for
noiseless data was 16.8. Table 2 summarizes these results for different NMF algorithms and on different datasets (also
see supplementary).
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Figure 3: UoI-NMFcluster for noisy MNIST two digits data. First 5× 4 images: 20 bases learned by UoI-NMFcluster
for the high noise MNIST two digits data. Second 5 × 4 images: The nonzero pattern of the sparse weights learned
for ten randomly chosen images. Third 5 × 4 images: The recovered images. Last 5 × 4 images: The original noisy
input images.

Table 1: Reconstruction error for noiseless and noisy data, avg. MSE between exact and learned bases and median
nnz per row in W & H .

Methods Data Error (n.less) MSE bases Error (noisy) nnz(Ŵ ) nnz(Ĥ)

UoI-NMFcluster (KL. metric) Swimmer 16.8 0.0015 195.1 4 22
basic NMF (KL. metric) Swimmer 54.2 0.0052 202.6 3 41.5
sparse NMF Swimmer 60.4 0.0055 206.2 5 60
TSVDNMF Swimmer 71.3 0.0236 240.5 3 80
UoI-NMFcluster (KL. metric) MNIST 36.61 0.0029 194.3 2 105.5
basic NMF (KL. metric) MNIST 48.69 0.0102 153.07 3 144.5
sparse NMF MNIST 59.06 0.0268 192.02 2 149
TSVDNMF MNIST 78.83 0.0580 256.77 3 156

MNIST 2-digit data Next, we use the popular handwritten digit images from the MNIST dataset [16]. The dataset
contains different sets of handwritten digits from 0 to 9 (by different individuals), and in this experiment we select
one such set and concatenate two of these images to form 2-digit handwritten numbers (00 to 99). We have 100 such
concatenated images. We consider noise (|N(0, 0.2)|) corrupted images (10 repetitions, hence we have 1000 images)
for training the NMF algorithms. The goal is to learn the individual digits (at units and tens place).

Figure 7 shows the results. The first 5× 4 images show the bases learned by our algorithm. The estimated weights
to reconstruct 20 randomly chosen images are given along with the reconstructions and the original noisy images.
Results for other NMF algorithms are given in the supplementary. UoI-NMFcluster gives better single digit bases
than basic NMF, as well as sparse NMF (see supplementary for results). We also observe the weights learned are quite
sparse, exactly two in most cases. Note that, in contrast to the swimmer data set, in this example, the bases (digits)
are not quite vertices of a simplex, and hence even noiseless data is not quite separable. Thus, the learned bases are
not perfectly decorrelated (e.g., a nine and a one and a seven are all highly correlated). Yet, UoI-NMFcluster learns
these 20 bases quite accurately with average MSE between exact and learned bases just 0.0034.

Table 2 summarizes the results obtained by the different NMF algorithms (first column) on different datasets
(second column). The algorithms are : basic NMF (KL. metric) is the basic NMF algorithm with KL divergence error
metric, UoI-NMFcluster (KL. metric) is the proposed algorithm with basic NMF-KL as the inside algorithm, sparse
NMF and TSVDNMF.

We give the error ‖A − WH‖F for the reconstruction of original noiseless data the third column and list the
average mean squared error (MSE) between the exact and the learned bases in the fourth. The reconstruction error
‖A − WH‖F when the noisy training data was recovered are listed in the fifth column. We also give the median
nonzeros per row in the weights W and the bases H learned by the different algorithms in the last two columns
respectively. Several additional results, observations and details are provided in the supplementary.
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Figure 4: Mouse brain MSI data: The six bases learned by UoI-NMFcluster and the corresponding weight distribu-
tion learned for the respective bases.
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Figure 5: Rat ECoG recordings: Left - ToneMap of the auditory cortex. Right - UoI-NMFcluster bases.

5 Experiments on Scientific Data
In the following experiments, we demonstrate the performance of UoI-NMFcluster in two scientific applications.

Mass Spectrometry Imaging of Mouse Brains Mass spectrometry imaging (MSI) is popularly used for label-free,
high-resolution spatial mapping of the chemical composition of complex biological samples [21]. MSI acquires one
or more mass spectra at each location. Each spectrum is digitized into 104 to 106 frequency bins (m/z).

Here we present the results obtained when UoI-NMFcluster was used on a MSI coronal section of mouse brain
(NIMS) available in OpenMSI [23] (https://openmsi.nersc.gov/). We processed the data as described in
[26], which results in 697 images (each of size 122×120). Figure 10 shows the six bases learned by UoI-NMFcluster

and the corresponding weight distribution learned for the respective bases.
We found that many of the bases learned by UoI-NMFcluster corresponded to spatially localized, anatomically

defined parts of the mouse brain (e.g., sensory cortex [a,b], hippocampus/putamen [c], and globus paladus [d], hy-
pothalamus [e] and piriform cortex [f], pointed by arrows). We also observe from the weight distributions that, these
parts (bases) appear at different frequency m/z bins, in line with the notion that these different regions of the brain
have different chemical compositions. These results were not found by other NMF algorithms (see Supplement).
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Electrophysiological Data from Rat Cortex In our final experiment, we employ our UoI-NMFcluster algorithm
to electrophysiological data collected from the rat brain. A 64-channel (8 × 8) electrocorticography (ECoG) array
is placed on the primary auditory cortex of an anesthetized rat, and neural responses (extracted from the time of
peak response) to an auditory stimuli consisting of 210 different sounds (30 frequencies and 7 amplitudes) with 20
repetitions (trials) each was collected, thus data is of size 64× 4200.

From these data, for each recording channel (’pixel’), we can determine the sound frequency which gave the largest
response across amplitudes (the center frequency). In Figure 9 (left), we color code each pixel in the array according
to its center frequency (color bar on right). Here, we see a general posterior-to-anterior (left-to-right) progression of
center frequencies going from low center frequencies to high center frequencies, with relative isotonic representations
along the dorsal-ventral (top-to-bottom) axis. In neuroscience, this spatial organization of frequency representations
is known as tonotopy. We note that, while we can summarize the responses in this way, the underlying data is more
complex, with each electrode giving a graded response as a function of both amplitude and frequency, and the data on
single-trials are noisy: thus, these data are not separable (see Supplement).

Figure 9(right) gives the bases learned by UoI-NMFcluster on this data. Bases are plotted as 8 × 8 grid to
represent the ECoG grid for visualization as per the channel grid location, and are ordered according to the location
of large values. Here, we see that the different bases reflect the tonopic organization of the underlying cortical tissue.
That is, the different bases are constrained in the anterior-posterior axis (i.e., across columns) while being extensive
in the dorsal-ventral axis (i.e., across rows), and generally tile the grid across the anterior-posterior axis. These results
were not observed with other NMF algorithms (see Supplement).

6 Conclusion
Our approach has three key innovations: (i) completely separate bases learning from weight estimation; (ii) cluster
bases learned over multiple bootstrap samples to obtain improved parts based decompositions; and (iii) use the UoI-
framework to solve the non-negative least squares problem for weight estimation of the learned bases. Separating
bases learning from weight estimation helps us in learning a best set of bases and eliminate noisy and spurious bases
at the fist stage. We then estimate the sparse weights separately to optimally reconstruct the original data using the
best set of bases. This naturally helps in denoising and obtain low errors. The clustered bases learning over multiple
bootstraps helps us obtain improved parts by selecting stable bases and eliminating noisy bases. The UoI-framework
helps us select the right set of bases and estimate the weights separately to reconstruct the data optimally and avoid
the reconstruction of the noise.

Thus, together these innovations gave rise to improved parts-based decompositions with sparse weights, which
greatly improves the interpretability of the results and is critical for scientific applications. Furthermore, we find
that the learned bases and sparse weights effectively denoise the reconstructed images. Finally, our results suggest
improved performance on noisy data sets with less pre-processing and relaxed assumptions. We note that our algorithm
has lots of natural parallelism (e.g., over bootstrap resamples), and NNLS computations can be computed in parallel
using the alternating directions method of multiplies (ADMM), thus allowing scalability to large data sets. Together,
these results suggest that a similar approach may result in improved results from other data decomposition algorithms
(e.g., CUR or sparse coding).
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A Additional Details and Experiments
In this supplementary material, we give additional details of the proposed NMF algorithm and present several addi-
tional experimental results. We also give additional details about the scientific datasets used in this work. First, we
describe an alternate approach to select the best k set of bases from theB1 different sets of bases learned over different
bootstrap samples.

A.1 Best set of bases by correlation thresholding
Recall that, in our main algorithm, we use a clustering based idea, particularly density based clustering (DBSCAN)
to select the best set of k set of bases Ĥ from the B1 different sets of bases learned over different bootstrap samples.
Other clustering methods such as kmeans/kmedian clustering can also be used, but we found that DBSCAN gave the
best results in most cases. In the next section, we give an example where the DBSCAN algorithm gives poor result.
Here we present an alternate approach based on correlation thresholding. Suppose we have ‘B1’ sets of ‘k’ bases
learned (k bases learned over B1 bootstrap samples), and these bases are stacked up in H̃ with k · B1 rows. We
consider a (k ·B1× k ·B1) cross-correlation matrix, given by C = H̃H̃T − diag(diag(H̃H̃T )) (if the rows have unit
norm, else C = abs(corr(H̃T )− I)), where H̃ contains all k ·B1 bases stacked up as rows.

Next, recall that our objective is to combine similar (near duplicate) bases that come from different bootstrap
samples into one bases and eliminate all noisy and spurious bases. Hence, in order to group similar bases, we use
the cross-correlation matrix. We consider all pairs of bases with cross-correlation between them greater than a certain
preselected threshold, for example, Cij ≥ 0.92, and combine these bases by averaging them. This is because, similar
bases should have high cross-correlation between them. Once all such similar bases are combined, we can then choose
the best set using the least sum of correlation idea presented in the main paper. The best k set of bases is then chosen
as the k bases that have the lowest sum of pairwise correlations. For this, we sum the rows of the new cross-correlation
matrix C (after similar bases are combined), and choose the best bases Ĥ as the k bases with the smallest sum of
correlations.

A drawback with this approach is that, we need to choose a right threshold such that the similar bases are grouped
together. A smaller than ideal threshold might result in dissimilar bases being combined. In the experimental results
presented in latter in this supplementary, we see that this correlation thresholding method performs well sometimes.

A.2 Additional experimental results
In this section, we present several additional experimental results illustrating the performance of UoI-NMFcluster in
comparison with various NMF algorithms.

Comparisons First, we consider the Swimmer and the two-digit MNIST datasets (ten copies of noise corrupted
images). The sizes of these matrices are 2560 × 1024 and 1000 × 1568, respectively. We reported the bases H and
the weights W learned (for a few randomly chosen images) by our proposed algorithm for these two datasets in the
main paper. Here, we give the bases learned from other popular NMF algorithms for these two datasets. The number
of bootstraps used for UoI-NMFcluster in all the experiments here and in the main paper was B1 = 20 for bases
learning and selection, and B2 = 10 for estimation of weights. We show how varying the number of bootstraps B1

affects the performance of UoI-NMFcluster in the latter part of this section (see Figure 11).
Figure 6 gives the 16 bases learned by various NMF algorithms from the noisy Swimmer dataset. The first 4 × 4

set of images (fig. 6 (A)) shows the noise corrupted images (randomly chosen) on which the algorithms were trained.
The second set (B) is the 16 bases learned by UoI-NMFcluster, which we also saw in the main paper. The third set
(C) corresponds to the bases learned by basic NMF algorithm with the KL metric. The algorithm was run for different
starting random matrices W and H and the set of bases that gave the least error is presented. We see how the basic
NMF algorithm learns few of the individual exact parts as bases and the noise is learned as one or two separate bases
(images [3,2] and [2,4]). UoI-NMFcluster learns such bases over different bootstrap resamples, clusters the superset
of bases and selects the best k bases using the least sum of correlation, yielding all the exact bases. Clearly, the noisy
bases have higher correlation than the individual exact parts.
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(A) (B) (C)

(D) (E) (F)

Figure 6: Bases learned by various algorithms: (A) The noise corrupted images (randomly chosen); (B)
UoI-NMFcluster (C) basic NMF-KL metric; (D)basic NMF-Euclidean metric;(E) sparse NMF; and (F) TSVDNMF.

(A) (B) (C)

(D) (E) (F)
Figure 7: Bases learned by various algorithms: (A) The noise corrupted images (randomly chosen); (B)
UoI-NMFcluster (C) basic NMF-KL metric; (D)basic NMF-Euclidean metric;(E) sparse NMF; and (F) TSVDNMF.
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Figure 8: The 49 bases learned for CBCL face images using different NMF algorithms. Left: UoI-NMFcluster;
Middle: basic NMF; and Right: sparse NMF.

For all compared algorithms other than UoI-NMFcluster, we report the best results obtained, throughout the
paper. This we feel is the best representative results for the remaining algorithms. Note that without clustering bases,
averaging is non-sensical, so there are no real ways to include averaging type results with base NMF algorithms.
Further discussion and results on the quality of the bases learned by the algorithms are given in the latter part of this
section.

Figure 6(D) gives the bases learned by basic NMF algorithm with the Euclidean metric (with multiple starting
matrices). The next set (E) is of the bases learned by sparse NMF algorithm. The algorithm was run over a range of
parameter λ1 and the set of bases that gave the least error is presented. We see that sparse NMF tends to give some
empty (all zero) bases. Tuning the regularization parameters λ1 and λ2 only increased or decreased the sparsity, and
did not improve the quality of the bases learned. The last set (F) is the bases learned by the TSVDNMF algorithm [4]
(as implemented by the authors). This algorithm is mainly tailored for topic modeling and what is known as dominant
NMF. The algorithm tends to learn the trunk in all bases (which is the dominant part of all images). The parameters
within the algorithm are automatically set for optimal performance as implemented by the authors and we have not
attempted to tune them.

Figure 7 presents the 20 bases learned by the various NMF algorithms from the noisy MNIST dataset. The six sets
of images are ordered in the same fashion as in fig. 6. That is, (A) is the noise corrupted images (randomly chosen);
(B) bases learned by UoI-NMFcluster (C) by basic NMF-KL metric; (D) by basic NMF-Euclidean metric; (E) by
sparse NMF; and (F) by TSVDNMF algorithm. We again observe the basic NMF-KL algorithm learns some of the
exact bases and other bases are spurious. The basic NMF-Euclidean metric algorithm learned the parts (digits in units
and tens place) almost correctly, but contains noise on the other part. Sparse NMF learns a few empty bases and the
TSVDNMF bases contain many eight and zero (which are dominant).

CBCL face images. Next we consider another ‘synthetic’ experiment with the CBCL face images database, used
in the seminal paper [17]. The dataset consists of 2429 face images of size 19 × 19. We use these images are input
matrix A (without any alteration), and learn 49 bases.

Figure 8 displays the 49 bases learned by the three NMF algorithms, namely UoI-NMFcluster, basic NMF and
sparse NMF. This dataset is interesting for multiple reasons. First, for UoI-NMFcluster, we use kmeans clustering
with cosine distance metric for this particular dataset. This is because, DBSCAN fails to give good results for this
dataset because the clusters of the bases learned are spatially overlapping. A correlation based clustering such as
kmeans with cosine metric performs better than density based clustering in such cases. Next, we make the following
observations from these results: a) The UoI-NMFcluster (Left) algorithm performs much better than the other two
algorithms in terms of yielding better parts based decompositions of the faces. We clearly observe that many of the
bases learned by UoI-NMFcluster are parts of a face such as nose, eyes, eyebrows, mouth, mustache, and cheek,
rather than whole face like features. Basic NMF algorithm in the middle and the sparse NMF algorithm in the right
give bases that look more like faces than parts of faces. b) The sparse NMF seems to perform poorly and either yields
bases that are complete faces or empty (all zeros) bases. c) The basic NMF algorithm does not seem to replicate the
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Table 2: Median nonzeros per row in W and H , reconstruction error for noisy and noiseless data, and average MSE
between exact and learned bases.

Methods Data Error (n.less) MSE bases Error (noisy) nnz(Ŵ ) nnz(Ĥ)

UoI-NMFcluster (KL. metric) Swimmer 16.8 0.0015 195.1 4 22
basic NMF (KL. metric) Swimmer 54.2 0.0052 202.6 3 41.5
sparse NMF Swimmer 60.4 0.0055 206.2 5 60
TSVDNMF Swimmer 71.3 0.0236 240.5 3 80
UoI-NMFcluster (Euc. metric) Swimmer 40.5 0.0047 246.2 4 42
basic NMF (Euc. metric) Swimmer 58.2 0.0076 309.7 10 45
UoI-NMF threshold 0.92 (KL) Swimmer 25.3 0.0036 219.1 3 34
UoI-NMFcluster (KL. metric) MNIST 36.61 0.0029 194.3 2 105.5
basic NMF (KL. metric) MNIST 48.69 0.0102 153.07 3 144.5
sparse NMF MNIST 59.06 0.0268 192.02 2 149
TSVDNMF MNIST 78.83 0.0580 256.77 3 156
UoI-NMFcluster (Euc. metric) MNIST 44.89 0.0138 178.73 2 108.5
basic NMF (Euc. metric) MNIST 45.80 0.0160 185.73 4 168
UoI-NMF threshold 0.93 (KL) MNIST 80.33 0.0192 272.66 3 124
UoI-NMFcluster (Euc. metric) CBCL (no PP) 74.85 - - 21 124
basic NMF (Euc. metric) CBCL (no PP) 161.48 - - 26 153
sparse NMF CBCL (no PP) 68.67 - - 11 235
UoI-NMFcluster (Euc. metric) CBCL (with PP) 83.40 - - 6 70
basic NMF (Euc. metric) CBCL (with PP) 80.82 - - 8 68
sparse NMF CBCL (with PP) 65.24 - - 11 180

results presented in the seminal paper [17].
Our algorithm returns better parts based decomposition because the algorithm clusters all the face like bases into

fewer groups/bases. The parts bases (which are sparse and less correlated with the other bases) are naturally separated
into different clusters, hence, yielding better parts based decompositions of the faces. The reason why we are unable
to replicate the results presented in the paper [17] for basic NMF algorithm is because there the face images are
heavily preprocessed. The bases learned for such a preprocessed face images by the three algorithms are given latter
in this section. This experiment shows that, compared to other algorithms, UoI-NMFcluster yields better parts based
decompositions of data that are clearly not separable, and does so with no data preprocessing.

Table 2 summarizes the results obtained by the different NMF algorithms (first column) on different datasets (sec-
ond column). The algorithms are : basic NMF (KL. metric) is the basic NMF algorithm with KL divergence error met-
ric, and basic NMF (Euc. metric) is the basic NMF algorithm with Euclidean distance error metric. UoI-NMFcluster

(KL. metric) is the proposed algorithm with basic NMF-KL as the inside algorithm. UoI-NMFcluster (Euc. metric)
is the proposed algorithm with basic NMF-Euc inside. UoI-NMF threshold 0.92 (KL) is the variant of our proposed
algorithm where the bases are selected using the correlation thresholding idea presented earlier. The threshold selected
was 0.92 and NMF-KL was the inside algorithm.

We give the error ‖A−WH‖F for the reconstruction of original noiseless data the third column and list the average
mean squared error (MSE) between the exact and the learned bases in the fourth. The reconstruction error ‖A−WH‖F
when the noisy training data was recovered are listed in the fifth column. We also give the average nonzeros per row in
the weightsW and the basesH learned by the different algorithms in the last two columns respectively. For the CBCL
face images, we do not consider a noisy version. Instead we compare the performance when faces are preprocessed
(CBCL (with PP)) as in [17] and are unaltered (CBCL (no PP)). Details on the preprocessing and the bases learned for
the preprocessed data are given in the latter part of this section. We see that, the reconstruction error for face dataset,
is lowest for sparseNMF. This is because, the bases learned by sparseNMF are more like faces than parts.

Bases quality Next, in order to analyze how good the learned bases are, for the different NMF algorithms, we look at
the quality of learned bases. For this, we consider the exact bases for the swimmer dataset, which are the 16 possible
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Figure 9: Correlation and Mean Squared Error (MSE) between the exact 16 parts of the swimmer dataset and the 16
bases learned by the three different methods, viz., basic NMF, sparse NMF and UoI-basicNMF. (plotted in ascending
order).
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Figure 10: Error v/s Noise level (σ): For noisy image recovery (left) and original image recovery (right) with absolute
Gaussian noise with noise level σ.

hand and leg positions of the swimmer, and compare the the learned bases against these exact bases. We use two
measures to analyze the quality, namely, the pairwise correlation and the mean squared error (MSE) between the exact
and learned bases (average of which is listed in the last column of Table 2 for the different algorithms). Figure. 9 plots
the pairwise correlation (left) and the MSE (middle) between the exact and learned bases for the swimmer dataset. To
check which exact basis is the closest to a given learned basis, we compute the pairwise correlation with all 16 exact
bases and choose the one with maximum correlation.

We observe that for UoI-NMFcluster, for all 16 bases, the pairwise correlation is almost one and MSE is very
close to zero indicating the bases learned are very close to the exact ones (which can be verified visually in Figure 6
here and in the main paper). For basic NMF (with KL metric), we see that some of the bases have pairwise correlation
almost one (very low MSE) indicating basic NMF learns some of the exact bases very well. Other bases are poor (have
high MSE). We observed this result in Figure 6(C) as well. Results for sparse NMF are also plotted. The correlation
with the empty bases are depicted by zeros.

Figure 9 also plots the Mean Squared Error (MSE) between the exact 20 digits (units and tens place) and the 20
bases learned by the three different methods. We again observe that all 20 bases learned by UoI-NMFcluster are very
good, and many of the bases learned by basic NMF were exact parts too, but it also learns few spurious bases due to
noise.

Errors v/s noise level Next, we analyze the performances of the three NMF methods, viz., basic NMF, sparseNMF
and UoI-NMFcluster in recovering the noisy and original images as a function of the noise level for the swimmer
dataset. We consider five noisy sets of the swimmer dataset with absolute Gaussian noise with different noise levels
σ. Figure 10 plots the Frobenius error ‖A−WH‖F as a function of the noise level (σ). In the left, we have the errors
when reconstructing A the noisy training data when the weights W and bases H were learned by the algorithms over
thisA which was corrupted by noise of the corresponding noise level σ. The errors obtained when these bases (learned
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Figure 11: Number of bootstraps: Mean Correlation and MSE between exact and learned bases (first two plots);
Reconstruction errors for noisy and the original data (last two plots). Error bars over 5 trials.

Figure 12: The 49 bases learned for preprocessed CBCL face images using different NMF algorithms. Left:
UoI-NMFcluster; Middle: basic NMF; and Right: sparse NMF.

from the different noisy data) were used to reconstruct the original noiseless data X are given in the right plot. The
results plotted are averages over five trials.

We observe that, all the reconstruction errors for recovering noisy images increase as the noise level increases. This
is expected since the reconstructions are expected to be noise free. For lower noise levels, the basic NMF algorithm
learns bases that are close to the exact ones, and both basic NMF and UoI-NMFcluster learn similar bases. However,
due to the intersection operation in weight W estimation, UoI-NMFcluster learns better weights and yields lower
error for both noisy and noiseless cases. As the noise level increases, the basic NMF learns the noise as one or two
bases and hence, the reconstruction of the original noiseless images becomes poor. Whereas, UoI-NMFcluster NMF
still learns exact bases, therefore the reconstruction error of the original noiseless images does not increase much.
This plot clearly illustrates the noise tolerance of UoI-NMFcluster. Other noise distributions were also tried, for e.g.,
Poisson noise (normalized to [0, 1]) and we obtained similar results.

Number of bootstraps We know that the number of bootstrapsB1 andB2 used in UoI-NMFcluster are parameters
which we can tune. In this experiment, we try to understand the influence of the number of bootstrap samples used
on the quality of results obtained. We apply UoI-NMFcluster with different number of bootstraps B1 on a noisy
Swimmer dataset (five noisy sets with σ2 = 0.2), and plot the results.

Figure 11 plots the mean pairwise correlation and the average MSE between the exact and the learned bases as a
function of the number of bootstraps B1 in the first two plots. The reconstruction errors for noisy and original data
using the bases learned by the UoI-NMFcluster for the different number of bootstraps used are plotted in the last two
plots. All plots show the mean and the error bars over 5 trials. We see that, as the number of bootstraps increases, the
quality of bases learned improves up to a certain number and then for large number of bootstraps, the quality remains
the same. This is because, as the number of bootstraps increase, the density of the clusters increase and the DBSCAN
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Figure 13: Mouse brain MSI data: The top nine bases learned by UoI-NMFcluster (left), basic NMF (middle) and
sparse NMF (right).

algorithm performance improves. There seems to be a number (between 15-20) beyond which, DBSCAN is able to
select all 16 bases exactly. Increasing the number of bootstraps beyond will not have much effect on the quality of
bases learned.

The reconstruction errors for the noisy and original data also decrease initially as the number of bootstraps in-
creases due to improvement in the basis quality. The improvement in the results are also due to improved weight
learning by the UoI framework. But, for larger B1 (> 25), the error slightly increases for recovering noisy bases be-
cause the weights learned become very sparse due to the intersection operation. We see the peak performance occurs
for around 20-22 bootstrap resamples. Hence, we chose B1 = 20 in all our experiments. The effect of the number
of bootstraps B2 in the weight estimation stage will be similar to effect of the number of bootstraps in the feature
estimation stage of UoILASSO. For discussion related to this, see [5].

Preprocessed CBCL images We saw earlier that, the bases learned for the CBCL face data by basic NMF were
not similar to the results presented in the paper [17]. This is because, in that work, the face images are preprocessed.
The face images are processed with mean variance normalization and thresholding. The grayscale intensities are first
linearly scaled so that the pixel mean and standard deviation are equal to 0.25, and then clipped to the range [0,1].
The bases learned for such preprocessed face images by UoI-NMFcluster, basic NMF, and sparse NMF are given
figure 12. We observed that the basic NMF performance improves significantly and the results replicate the ones
presented in [17]. However, we see that UoI-NMFcluster also gives very good parts based bases. This experiment
shows that, compared to other NMF algorithms, UoI-NMFcluster yields better parts based decompositions of data
that are clearly not separable, and does so without requiring data preprocessing.

A.3 Additional details on the scientific data
Mass Spectrometry Imaging of Mouse Brains Mass Spectrometry Imaging (MSI) is a modern chemical imaging

technique that has enabled investigation of metabolic processes at very high resolution (subcellular to centimeter
range). In MSI, a laser is raster scanned across a surface and molecules are desorbed from the surface at each location.
These ions/molecules are then collected and analyzed by mass spectrometry, which yields a large number of spectral
images. MSI may contain spectral images with up to a million pixels and are typically collected over 104 to 106

frequency bins (m/z). Hence, such MSI data present many analysis and interpretation challenges due to the size and
complexity of the data. The objective of using NMF (or any other dimensionality reduction techniques) on MSI data
is to reduce the large volume of measured data into easier to interpret smaller blocks. The goal is to identify important
locations/pixel positions and the corresponding chemical composition.

The MSI data (NIMS) of the mouse brain which we reported in the main paper was obtained from OpenMSI1 [23].

1https://openmsi.nersc.gov/
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Figure 14: Rat ECoG recordings: Recording patterns.

Figure 15: Rat ECoG recordings: The top nine bases learned by UoI-NMFcluster (left), basic NMF (middle) and
sparse NMF (right).

The data contains 120× 122 size spectral images, computed at 80339 frequency m/z bins. The data is very noisy and
certain preprocessing is necessary. The data were preprocessed by using background subtraction, smoothing and peak
picking as mentioned in [26]. This reduced the number of data points from 80339 to 697, after peak picking. We saw
that the results obtained from UoI-NMFcluster corresponded to spatially localized, anatomically defined parts of the
mouse brain. The weight distributions indicated the dominant chemical compositions for the localized regions.

We saw the important six (meaningful from neuroscience perspective) bases learned by UoI-NMFcluster for
this MSI data in the main paper. These bases were spatially localized and were anatomic parts of the mouse brain.
Figure 13 gives the top nine bases from UoI-NMFcluster (left), basic NMF (middle) and sparse NMF (right) algo-
rithms. We clearly note that, not all bases for the latter two algorithms are parts of the brain (parts based bases) with
some bases highlighting all regions of the brain. The top bases learned by UoI-NMFcluster are better parts based
representations of the mouse brain compared to the bases learned by basic and sparse NMF, which do not yield all
parts for a given decomposition. UoI-NMFcluster ensembles all the bases learned and chooses the best parts based
bases. Table 3 gives the average cross correlation between these nine bases and their median sparsities (nnz of bases).
UoI-NMFcluster bases are less correlated and are sparser, indicating that UoI-NMFcluster bases are better parts
based representations (individual parts are likely to be uncorrelated from each other and are sparse).

Electrophysiological Data from Rat Cortex The objective of this experiment is to learn a set of bases (channel
responses/ neuron firing patterns) from the ECoG recordings for certain stimuli. With the ever increasing number
of simultaneously recorded neural signals, neuroscience has seen a resurgence in the application of dimensionality
reduction algorithms to summarize high-dimensional data. However, the primary method used in the field, PCA, has
made the interpretation of the physical meaning of the derived axes opaque (a common critique of PCA). Here, our
goal was to determine ifUoI-NMFcluster could extract a physically meaningful bases directly from neural recordings
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Table 3: Average cross correlation between bases and median nnz per row in H and W .
Methods Data Corr. nnz(Ĥ) nnz(Ŵ )

UoI-NMFcluster MSI 0.3960 955 13 (of 20)
basic NMF MSI 0.4440 1311 17 (of 20)
sparse NMF MSI 0.3915 1647 3 (of 20)
UoI-NMFcluster ECoG 0.1545 22.5 3 (of 12)
basic NMF ECoG 0.1670 24.5 9 (of 12)
sparse NMF ECoG 0.1674 43.5 6 (of 12)

when there is a known spatial organization of neural response properties (otherwise, how would we know what success
would look like?). To this end, we applied UoI-NMFcluster to neural recordings taken from the auditory cortex of
a rat, which has a well characterized spatial organization of frequency representations across the cortical surface (i.e.,
tonotopy).

In this experiment, we used the neural response recordings collected from the primary auditory cortex of an anes-
thetized rat using a 64 channel µECoG. This is novel data collected by the authors (us) and has not been used in
any prior literature. Following standard procedures in the field, at each electrode, we determined the neural response
by extracting the analytic amplitude from the ’high-gamma band’ [70-150Hz], which correlates well with multi-unit
spiking activity. These responses were z-scored relative to the baseline statistics for each channel individually. The
response was for auditory stimuli consisting of 210 different sounds (30 frequencies and 7 amplitudes) with 20 rep-
etitions (trials) each. The number of time steps used was 101. Hence, the data was of size 64 × 4200 × 101. This
data was preprocessed by doing peak response picking. For each stimuli, the peak response after the stimulus starts
(after 40 time steps), for each channel was chosen as that channel’s output for that particular stimulus. Hence, the
data was reduced to 64 × 4200 (with each 20 set of columns corresponding to the 210 stimuli each). A heat-map of
each electrodes (as they are laid out on the grid) neural response to each frequency × amplitude pairing can be seen
in Figure 14. This shows how the underlying data is more complex, with each electrode giving a graded response as a
function of both amplitude and frequency, and the data on single-trials are noisy.

The NMF bases learned by UoI-NMFcluster were reported in the main paper. These bases were plotted as
8 × 8 grid to represent the ECoG grid for visualization as per the channel grid location. We saw the bases learned
by UoI-NMFcluster for this MSI data had meaningful columnar structure which corresponded to the tonopic or-
ganization of the underlying cortical tissue. Figure 15 gives the top nine bases from UoI-NMFcluster (left), basic
NMF (middle) and sparse NMF (right) algorithms. We again note that, the latter two algorithms fail to learn all parts
for a given decomposition, and some of the bases learned do not have the columnar structure that we are looking for.
UoI-NMFcluster yields better parts based representation since it ensembles the bases learned over different bootstrap
samples and chooses the best parts based bases.

Table 3 gives the average cross correlation between the top bases and their median sparsities H and W (nnz of
bases and weights) for the two scientific datasets. nnz(W ) was computed for the original number of bases used
(as indicated in the parantheses). nnz(H) reported are for the top nine bases shown in figures 13 and 15. For
computing the cross correlation, we ignored the zero bases obtained by sparse NMF in both cases. We saw how
UoI-NMFcluster gives more meaningful bases from the scientific applications viewpoint. The above table shows
that, the top UoI-NMFcluster bases are less correlated and are sparser compared to the top bases of basic and sparse
NMF, indicating that UoI-NMFcluster bases are better parts based representations. Our method reconstructs the data
with fewer number of bases as well (sparser W ), which helps interpretability.
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