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Abstract

This thesis is devoted to answering a range of questions in machine learning and

data analysis related to large dimensional matrices and scientific data. Two key research

objectives connect the different parts of the thesis: (a) development of fast, efficient,

and scalable algorithms for machine learning which handle large matrices and high

dimensional data; and (b) design of learning algorithms for scientific data applications.

The work combines ideas from multiple, often non-traditional, fields leading to new

algorithms, new theory, and new insights in different applications.

The first of the three parts of this thesis explores numerical linear algebra tools to

develop efficient algorithms for machine learning with reduced computation cost and

improved scalability. Here, we first develop inexpensive algorithms combining various

ideas from linear algebra and approximation theory for matrix spectrum related prob-

lems such as numerical rank estimation, matrix function trace estimation including log-

determinants, Schatten norms, and other spectral sums. We also propose a new method

which simultaneously estimates the dimension of the dominant subspace of covariance

matrices and obtains an approximation to the subspace. Next, we consider matrix

approximation problems such as low rank approximation, column subset selection, and

graph sparsification. We present a new approach based on multilevel coarsening to com-

pute these approximations for large sparse matrices and graphs. Lastly, on the linear

algebra front, we devise a novel algorithm based on rank shrinkage for the dictionary

learning problem, learning a small set of dictionary columns which best represent the

given data.

The second part of this thesis focuses on exploring novel non-traditional applica-

tions of information theory and codes, particularly in solving problems related to ma-

chine learning and high dimensional data analysis. Here, we first propose new matrix

sketching methods using codes for obtaining low rank approximations of matrices and

solving least squares regression problems. Next, we demonstrate that codewords from

certain coding scheme perform exceptionally well for the group testing problem. Lastly,

we present a novel machine learning application for coding theory, that of solving large

scale multilabel classification problems. We propose a new algorithm for multilabel

iv



classification which is based on group testing and codes. The algorithm has a simple in-

expensive prediction method, and the error correction capabilities of codes are exploited

for the first time to correct prediction errors.

The third part of the thesis focuses on devising robust and stable learning algo-

rithms, which yield results that are interpretable from specific scientific application

viewpoint. We present Union of Intersections (UoI), a flexible, modular, and scalable

framework for statistical-machine learning problems. We then adapt this framework to

develop new algorithms for matrix decomposition problems such as nonnegative matrix

factorization (NMF) and CUR decomposition. We apply these new methods to data

from Neuroscience applications in order to obtain insights into the functionality of the

brain. Finally, we consider the application of material informatics, learning from mate-

rials data. Here, we deploy regression techniques on materials data to predict physical

properties of materials.
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Chapter 1

Introduction

Many modern machine learning, data analysis and scientific computation applications

involve operating on large dimensional matrices and datasets (sizes ranging from 104 −
106). With ever increasing sizes come the necessity to develop scalable fast algorithms

for handling such large dimensional data. The primary focus of this thesis is in devel-

oping algorithms for high dimensional data problems with practical applications and

theoretical guarantees. For this purpose, we explore ideas from different, often non-

traditional, combinations of fields leading to new algorithms, new theory, and new

insights in different applications. In the first part of the thesis, we explore numerical

linear algebra tools to develop methods for matrix related problems. The spectrum

(eigenvalue/singular value distribution) of data matrices, its functions and sums reveal

various properties of the data, and are often required to be computed in numerous ap-

plications. However, as the size of the data matrices increases, it becomes impractical

to explicitly compute the complete spectrum of these large matrices. Hence, the devel-

opment of inexpensive methods which approximately estimate these spectral quantities

has become a primary focus of research in many fields.

Similarly, in many modern applications involving very large datasets (matrices), the

data is typically handled via some form of matrix approximation or dimensionality re-

duction. Matrix approximations and factorizations such as principal component analysis

(PCA), partial singular value decompositions (SVD), CUR decompositions, graph spar-

sifications, nonnegative matrix factorization (NMF), and dictionary learning are some

of the popular tools used in many applications. Designing inexpensive methods for the

1



2

computation of the matrix spectral quantities and various matrix approximations for

large matrices is the focus of the first part of the thesis.

Error correcting codes (ECC) have been used successfully in communication systems

for several decades. In recent years, a new line of research is emerging where information

theory and codes are being explored for nontraditional applications such as distributed

storage systems, compressed sensing, and scientific computing. The second part of this

thesis explores novel applications of ECC, particularly in solving problems related to

machine learning and high dimensional data analysis. We show how unique properties

of codes such as k-wise independence of codewords, orthogonality of code matrices,

low coherence, error correction and others, can be exploited to develop new methods

to solve various problems including low rank approximation, least squares regression,

group testing, and multilabel classification.

In many scientific fields, the development of new sensing and imaging technologies

has resulted in the generation of large volumes of data. These large datasets bring with

them opportunities of new discoveries and insights into the fundamentals of nature. In

order to realize such opportunities, the development of novel machine learning and data

analysis methods is necessary. Statistical-machine learning algorithms for scientific data

should satisfy the bi-criteria of returning results that are simultaneously predictive and

interpretable. However, these bi-criteria are often at odds, and methods that robustly

(few assumptions on the data/noise) achieve both are lacking. In the third part of this

thesis, we focus on designing new learning methods that robustly extract meaningful

and interpretable information from the data which arrive from different areas of science.

1.1 Thesis Overview

The underlining theme that connects the different parts of this thesis is: development

of algorithms for learning from large dimensional data. The thesis comprises of three

main parts.

1. Linear Algebra for Machine Learning (ML).

2. Applications of Coding Theory.

3. Machine Learning for Science.
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Part II: Appli-

cations of codes

Part I: Linear

Algebra for ML

Part III: ML

for Science

Thesis

(3 parts)

The thesis work primarily has two key objectives. The first one is developing al-

gorithms for handling large dimensional data matrices in machine learning that are

computationally inexpensive and scalable. In order to develop these algorithms, we ex-

plore ideas and tools from two diverse, but well-studied fields, namely, numerical linear

algebra (Part I) and coding theory (Part II). The second objective is designing learning

algorithms that yield interpretable results in scientific applications (Part III).

Linear Algebra for machine learning - Powerful, efficient and inexpensive (in

terms of computation time and memory requirements) methods can be developed using

numerical linear algebra tools to solve various problems related to large dimensional

data applications. In the first part of the thesis, we explore these tools to develop

methods for matrix related problems that commonly arise in machine learning and

other applications.

NLA for ML

(5 chapters)

Matrix

spectral sums

Matrix ap-

proximations

C2. Matrix

function trace

C3. Rank

estimation

C4. Krylov

dimension

C5. Approx.

by coarsening

C6. Dictio-

nary learning
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In most applications, the matrix related problems we encounter can be classified

into two broad classes. The first class is related to the matrix spectrum, in particular,

estimating spectral functions and their sums. These quantities reveal different properties

of the given data matrix. The second class of matrix problems involves approximating

a given matrix by smaller and/or sparser matrices in order to reduce computational

and storage costs. In this thesis, we discuss the following matrix problems belonging to

these two categories.

• Matrix function trace estimation: The problem of estimating the trace (sum

of diagonal entries) of matrix functions such as log-determinant, Schatten norms,

and spectral densities, appears often in different applications. However, explicit

computation of such traces will be impractical for large matrices. This is the first

problem considered in the thesis and a set of inexpensive algorithms are discussed

for these trace estimations. In chapter 2, we demonstrate how a method called

Stochastic Lanczos Quadrature can be employed for the fast computation of these

traces. We establish theoretical results, which give multiplicative and additive

error guarantees for the method. We also present few applications where the

method can be useful. The results in this chapter were published in [1].

• Numerical rank estimation: In many of the data involving applications, it is

often required to know the approximate rank of the data matrix at hand (approx-

imate smaller dimension in which the information actually lies). In chapter 3, we

consider the problem of numerical (approximate) rank estimation, and present a

set of inexpensive methods, which require no matrix decomposition for the esti-

mation of approximate matrix ranks. These methods were presented in [2, 3].

• Krylov dimension estimation: In many applications, it is often desired to es-

timate the numerical rank of the data, and then obtain an approximation for the

principal subspace associated with the numerical rank, for example in principal

component analysis (PCA), subspace tracking, etc. The Krylov subspace based

methods are the most popular and effective methods used for computing these ap-

proximations. In chapter 4, we present a method which combines a novel criterion

based rank estimator with the Krylov subspace methods to simultaneously esti-

mating the numerical rank of covariance matrices and approximate the associated
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principal subspace. The work is discussed in [4]. This work addresses two prob-

lems (rank estimation and subspace approximation) simultaneously, belonging to

the two classes (matrix spectrum and matrix approximation), respectively.

• Matrix approximation via coarsening: In modern applications involving very

large datasets (matrices), the data is typically handled via some form of matrix

approximation such as the partial SVD, column subset selection, graph sparsifica-

tion and others. We propose a novel approach to compute these approximations

for large sparse matrices and graphs in chapter 5. The approach is based on multi-

level coarsening, a popular tool used in graph partitioning and parallel computing,

and is presented in [5]. This method exploits the structures available in the data

and yields superior approximations.

• Dictionary learning: In signal and image processing research, the dictionary

learning problem (learning a set of dictionary columns from which the matrices

are derived) has received a lot of attention in recent years. Chapter 6 explores new

ideas for dictionary learning using linear algebra tools. One such algorithm we

develop is to learn incoherent dictionaries (distinctive dictionary columns in terms

of correlation) based on rank shrinkage, published in [6]. The proposed algorithm

yields improved dictionary incoherence compared to other popular methods.

Applications of coding theory - Recently, error correcting codes (ECC) have been

used in nontraditional applications such as distributed storage systems, compressed

sensing, and scientific computing. In the second part of this thesis, we explores novel

machine learning and high dimensional data analysis applications of codes.

C8. Group

testing

C7. Low rank

approximation

C9. Multilabel

classification

Codes

(3 chapters)
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• Low rank approximation: In recent years, much attention has been devoted to

randomized sampling and sketching methods for effectively approximating large

matrices. In chapter 7, we demonstrate that certain error correcting codes (which

are almost deterministic) mimic the randomness properties desired for sampling

data matrices. Using this, we illustrate how codes can be used to obtain low rank

approximations of matrices and also solve least squares regression problems. We

first presented the idea in [7], and improved the theoretical results and expanded

the scope of the work in [8].

• Group testing: The problem of group testing, detecting defective items from a

large set of items by testing for defects in groups, has many applications in imaging,

sensing, genetics, and recently in multilabel classification. We demonstrate that

codewords from a popular coding scheme performs exceptionally well in group

testing, and show that the proposed method outperforms traditional methods in

chapter 8, first presented in [9].

• Multilabel classification: The coding theory application part of the thesis is

concluded by presenting a new machine learning application for codes, that of

solving large scale multilabel classification problems. Such classification problems

are ubiquitous in various applications such as image, video and tweet annotation,

web page categorization and others, and modern applications have a large number

of classes. In chapter 9, we propose a new algorithm for multilabel classification

which is based on group testing and codes. The algorithm has many promising

advantages, including a simple prediction method that is very inexpensive, and

it exploits the error correction capabilities of codes for the first time to correct

prediction errors. We presented this multilabel classification approach in [10].

Machine learning for science - In order to explore the vast amount of complex

data collected in different scientific fields, the development of novel machine learning

and data analysis methods is necessary. The primary objective here is to obtain results

that are interpretable from the scientific viewpoint (traditional methods fail to do so),

and that are stable and robust to noise, since scientific data are typically noisy, where

standard noise models fail. The last of the three parts of this thesis focuses on developing
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such learning methods to extract meaningful information from the data which arrive

from different areas of science.

ML for Science

(2 chapters)

C10. Union of

Intersections

C11. Material

Informatics

• Union of Intersections: In chapter 10, we discuss a new statistical framework

named Union of Intersections (UoI) for interpretable machine learning proposed

in [11]. UoI is a flexible, modular, and scalable framework for statistical-machine

learning problems. We demonstrate the applicability of the framework by develop-

ing new algorithms for Nonnegative matrix factorization (NMF) (UoI-NMFcluster)

and CUR decomposition (UoI-CUR) based on UoI. Modern technologies such as

Electrocorticography (ECoG) have resulted in the collection of large volumes of

neurophysiological data. Extracting key features from such data will provide bet-

ter insight into functioning of the brain and may result in new discoveries. We

employ UoI-NMFcluster to summarize Neuroscience data with a set of few inter-

pretable bases. We presented these results in [12]. We also use the UoI-CUR

algorithm to summarize genetics data.

• Material Informatics: In recent years, the use of machine learning techniques

to explore materials data is gaining popularity. In the last chapter 11 of this thesis,

we examine supervised learning techniques for the study of material behavior and

for material discovery. We develop a machine learning (regression) technique for

the prediction of formation enthalpies of new metal alloys using easily available

material data, which we presented in [13]. The goal of this work is to help by-

pass time intensive calculations (some take days of computations), e.g., ab-initio

calculations, used in material science.
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1.2 Background

In this section, we briefly review the key background topics related to the work presented

in the thesis.

1.2.1 Matrix function traces

The problem of estimating the trace of matrix functions appears frequently in appli-

cations of machine learning, signal processing, scientific computing, statistics, com-

putational biology and computational physics [14, 15, 16, 17]. For a symmetric ma-

trix A ∈ Rn×n with an eigen-decomposition A = UΛUT , with Λ = diag(λ1, . . . , λn),

where λi, i = 1, . . . , n are the eigenvalues of A, the matrix function f(A) is defined as

f(A) = Uf(Λ)UT , with f(Λ) = diag(f(λ1), . . . , f(λn)) [18]. Then the trace estima-

tion problems mentioned above can be formulated as follows: given a symmetric matrix

A ∈ Rn×n, compute an approximation of the trace of the matrix function f(A), i.e.,

tr(f(A)) =
n∑
i=1

f(λi), (1.1)

where λi, i = 1, . . . , n are the eigenvalues of A, and f is the desired function. A naive

approach for estimating the trace of matrix functions is to compute this trace from the

eigenvalues of the matrix, which will be expensive for large matrices. Popular trace es-

timation problems include computing the log-determinant (f(t) = log(t)), the Schatten

p-norms (f(t) = tp/2), the Estrada index (f(t) = et) and the trace of matrix inverse

(f(t) = t−1). In chapter 2, we present a set of inexpensive methods to approximately

estimate these traces.

1.2.2 Stochastic trace estimator

Hutchinson’s unbiased estimator [19] uses only matrix-vector products to approximate

the trace of a generic matrix D. The method estimates the trace tr(D) by first gen-

erating random vectors vl, l = 1, . . . ,nv with equally probable entries ±1, and then
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computing the average over the samples of v>l Dvl,

tr(D) ≈ 1

nv

nv∑
l=1

v>l Dvl. (1.2)

It is known that any random vectors vl with mean of entries equal to zero and unit 2-

norm can also be used in the above computation [20]. This stochastic trace estimator can

be employed in methods which compute the matrix function traces tr(f(A)) discussed

above.

The convergence analysis for the stochastic trace estimator was developed in [20],

and improved in [21] for sample vectors with different probability distributions. We

present the convergence rate results in chapter 2. We will employ the stochastic trace

estimator to compute various matrix spectrum related quantities in chapters 2 and 3.

1.2.3 Matrix factorizations and approximations

Modern applications typically handle large datasets (matrices) via some form of matrix

approximation and dimensionality reduction. Here, we review some of the popular

matrix factorization and approximation methods that will be considered in this thesis.

SVD and low rank approximation: Low rank approximation and principal com-

ponent analysis (PCA) are the most popular dimensionality reduction methods used in

numerous data related applications [22, 23]. Consider a data matrix A ∈ Rm×n, with

its singular Value decomposition (SVD) A = UΣV T , where U and V are orthogonal

matrices contain the left and the right singular vectors as columns, respectively, and Σ

is a diagonal matrix with nonzero singular values σi, i = 1, . . . , n as diagonal entries.

For a rank k � n, a rank-k approximation can be obtained as, Ak = UkΣkV
T
k , where

Uk and Vk are matrices containing the top k left and right singular vectors as columns,

respectively.

It is well-known that Ak = UkΣkV
T
k is the best rank-k approximation of A with

respect to both Frobenius and spectral norms. That is, we have from the Eckart-Young

theorem [24], for ξ ∈ {2, F},

min
rank(X)≤k

‖A−X‖ξ = ‖A−Ak‖ξ. (1.3)



10

We also know that, PCA and SVD are closely related. This is because the left singular

vectors U of A are the eigenvectors of AAT and the right singular vectors V of A are

the eigenvectors of ATA. Hence, in many data related applications, PCA and partial

SVD are used interchangeably.

CUR decomposition: Another popular dimensionality reduction method used in

many applications is column subset selection (CSSP) [25]. If even a subset of the rows

are selected, then the method is called CUR decomposition [26], where C and R are

matrices with the selected columns and rows, respectively, and U is the mixing matrix,

such that A ≈ CUR. Given a large data matrix A ∈ Rm×n whose columns we wish to

select, suppose Vk is the matrix associated with the top k right singular vectors of A.

Then, the leverage score of the ith column of A is given by

`i =
1

k
‖Vk(i, :)‖22,

the norm of the ith row of Vk. In leverage scores sampling, the columns of A are

sampled using the probability distribution pi = min{1, `i}. Most popular methods for

CSSP involve the use of this leverage scores as the probability distribution for columns

selection [27, 25, 26]. However, this method is expensive since one needs to compute the

top k singular vectors, which is prohibitive for large matrices. Many other closely related

methods have been proposed for randomized sampling and column subset selection of

matrices [28].

Graph sparsification: Sparsification of large graphs has several computational (cost

and space) advantages and has hence found many applications [29, 30, 31]. Given a

large graph G = (V,E) with n vertices, we wish to find a sparse approximation to

this graph that preserves certain information of the original graph such as the spectral

information [31, 32], structures like clusters within in the graph [29], etc. Let B ∈ R(n2)×n

be the vertex edge incidence matrix of the graph G, where eth row be of B for edge

e = (u, v) of the graph has a value
√
we in columns u and v, where we is the weight of

the edge, and zero elsewhere. The corresponding Laplacian of the graph is then given

by K = BTB.

The spectral sparsification problem involves computing a weighted subgraph G̃ of G
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such that if K̃ is the Laplacian of G̃, then xT K̃x is close to xTKx for any x ∈ Rn. Many

methods have been proposed for the spectral sparsification of graphs, see e.g., [31, 32, 28].

A popular approach is to perform row sampling of the matrix B using the leverage score

sampling [32]. Considering the SVD of B = UΣV T , the leverage scores `i for a row bi

of B can be computed as `i = ‖ui‖22 ≤ 1 using the rows of U . This leverage score is

related to the effective resistance of edge i [31]. By sampling the rows of B according

to their leverage scores it is possible to obtain a matrix B̃, such that K̃ = B̃T B̃ and

xT K̃x is close to xTKx for any x ∈ Rn.

Nonnegative matrix factorization (NMF): Since its popularization, NMF [33]

has been used in many applications for obtaining interpretable decompositions of data.

Given a matrix A ∈ Rm×n+ (R+ represents the positive orthant), where each row of A

corresponds to a data point in Rn+, and a rank k, the problem of NMF is to compute

the matrices W ∈ Rm×k+ and H ∈ Rk×n+ , such that A ≈WH. This problem is generally

posed as a non-convex optimization problem,

min
W≥0,H≥0

‖A−WH‖F . (1.4)

Here, the rows of the matrix H form the basis of the objects (say images), and the

rows of W are the encoding of the basis in the matrix A. Since both W and H are

nonnegative, NMF sometimes gives more interpretable parts based decompositions, with

the intuitive notion of “combining parts to form a whole” [33].

Several algorithms to solve the NMF problem have been developed to achieve various

objectives, such as more interpretable results, sparser solutions, unique solutions, etc.

Sparse NMF [34, 35] and convolutional NMF [36] are two popular variants of NMF. It has

been claimed that NMF implicitly yields a sparse representation of the data. However,

in order to obtain explicit sparse NMF solutions, the following objective function is

popularly used:

min
W≥0,H≥0

1

2

‖A−WH‖2F + λ1‖W‖2F + λ2

k∑
j=1

‖H(j, :)‖2p


with p = {0, 1} (promotes sparsity), λ1 and λ2 are regularization parameters.
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Dictionary learning: In recent years, sparse signal approximations by means of re-

dundant or overcomplete dictionaries have received much attention across various re-

search areas, particularly in signal and image processing [37, 38]. Considering a set

of signals Y = (y1, . . . , yN ) with yi ∈ Rn and a redundant (overcomplete) dictionary

D ∈ Rn×k, k > n, the sparse signal approximation model assumes that the signals yi

can be represented as a sparse linear combination of the columns of D, which are also

called atoms. So, we can express this model as

yi ' Dxi, i = 1, . . . , N, (1.5)

where xi’s ∈ Rk are sparse vectors with a very small number of non-zero approximation

coefficients s = ‖xi‖0 � n. The particularity of a dictionary learning model is that

we learn the dictionary D, as well as find the sparse linear multivariate model that

best describes the set of signals Y , simultaneously. The parameters of this model are

determined by solving the sparse approximation problem

arg min
D∈D,X∈X

‖Y −DX‖2F , (1.6)

where ‖.‖F is the Frobenius norm, and D and X are the admissible sets for the dictionary

and the approximation coefficient matrix X = (x1, . . . , xN ), respectively. The set D is

usually defined as the set of all dictionaries with unit column norm, i.e., D = {D ∈
Rn×k : ‖dj‖2 = 1, ∀j}, whereas X constrains the coefficient matrix to be sparse, i.e.,

the number of nonzero entries s in X is much smaller compared to the total number

of entries n or X = {X ∈ Rk×N : ‖xi‖0 ≤ s � n,∀i}. Dictionary learning starts with

the set of signals Y , and aims to find both the dictionary D and the approximation

coefficients matrix X. The optimization problem (1.6) is not convex and has been

shown to be an NP hard problem [39]. So, the methods for solving it can only hope to

achieve an approximate solution.

1.2.4 Error Correcting Codes

In communication systems, data are transmitted from a source (transmitter) to a desti-

nation (receiver) through physical channels. These channels are usually noisy, causing
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errors in the data received. In order to facilitate detection and correction of these er-

rors in the receiver, error correcting codes are used [40]. A block of information (data)

symbols are encoded into a binary vector1, also called a codeword. Error correcting

coding methods check the correctness of the codeword received. The set of codewords

corresponding to a set of data vectors (or symbols) that can possibly be transmitted is

called the code. As per our definition a code C is a subset of the binary vector space of

dimension `, F`2, where ` is an integer.

A code is said to be linear when adding two codewords of the code coordinate-wise

using modulo-2 arithmetic results in a third codeword of the code. Usually a linear

code C is represented by the tuple [`, r], where ` represents the codeword length and

r = log2 |C| is the number of information bits that can be encoded by the code. There

are `− r redundant bits in the codeword, which are sometimes called parity check bits,

generated from messages using an appropriate rule. It is not necessary for a codeword

to have the corresponding information bits as r of its coordinates, but the information

must be uniquely recoverable from the codeword.

It is perhaps obvious that a linear code C is a linear subspace of dimension r in the

vector space F`2. The basis of C can be written as the rows of a matrix, which is known

as the generator matrix of the code. The size of the generator matrix G is r× `, and for

any information vector m ∈ Fr2, the corresponding codeword is found by the following

linear map:

c = mG.

Note that all the arithmetic operations above are over the binary field F2.

To encode r bits, we must have 2r unique codewords. Then, we may form a matrix

of size 2r × ` by stacking up all codewords that are formed by the generator matrix of

a given linear coding scheme,

C︸︷︷︸
2r×`

= M︸︷︷︸
2r×r

G︸︷︷︸
r×`

. (1.7)

For a given tuple [`, r], different error correcting coding schemes have different generator

matrices and the resulting codes have different properties. For example, for any two

integers t and q, a BCH code [41] has length ` = 2q − 1 and dimension r = 2q − 1− tq.
1Here, and in the rest of the text, we are considering only binary codes. In practice, codes over other

alphabets are also quite common.
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Any two codewords in this BCH code maintain a minimum (Hamming) distance of at

least 2t+ 1 between them.

Code properties: The minimum pairwise distance between codewords is an impor-

tant parameter of a code and is called just the distance of the code. As a linear code

C is a subspace of a vector space, the null space C⊥ of the code is another well de-

fined subspace. This is called the dual of the code. For example, the dual of the

[2q − 1, 2q − 1− tq]-BCH code is a code with length 2q − 1, dimension tq and minimum

distance at least 2q−1− (t−1)2q/2. The minimum distance of the dual code is called the

dual distance of the code.

Depending on the coding schemes used, the codeword matrix C will have a variety

of favorable properties, e.g., low coherence which is useful in compressed sensing [42].

Since the codewords need to be far apart, they show some properties of random vectors.

We can define probability measures for codes generated from a given coding scheme. If

C ⊂ {0, 1}` is an F2-linear code whose dual C⊥ has a minimum distance above k (dual

distance > k), then the code matrix is an orthogonal array of strength k [43]. This

means that, in such a code C, for any k entries of a randomly and uniformly chosen

codeword c say c′ = {ci1 , ci2 , . . . , cik} and for any k bit binary string α, we have

Pr[c′ = α] = 2−k.

This is called the k-wise independence property of codes.

The codeword matrix C has 2r codewords each of length ` (a 2r × ` matrix), i.e., a

set of 2r vectors in {0, 1}`. Given a codeword c ∈ C, let us map it to a vector φ ∈ R`

by setting 1 −→ −1√
2r

and 0 −→ 1√
2r

. In this way, a binary code C gives rise to a code

matrix Φ = (φ>1 , . . . , φ
>
2r)
>. Such a mapping is called binary phase-shift keying (BPSK)

and appeared in the context of sparse recovery (e.g., p. 66 [42]).
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Chapter 2

Matrix function trace estimation

2.1 Introduction

A number of problems which appear in applications of machine learning, signal process-

ing, scientific computing, statistics, computational biology and computational physics

[14, 44, 45, 15, 16, 17] can all be posed as the matrix function trace estimation problem

discussed in the previous chapter. The development of fast and scalable algorithms to

perform this task has long been a primary focus of research in these fields. An impor-

tant instance of the trace estimation problem is that of approximating log(det(A)), the

log-determinant of a positive definite matrix A. Log-determinants of covariance and

precision matrices play an important role in Gaussian processes and Gaussian graphical

models [45]. Log-determinant computations also appear in applications such as kernel

learning [46], Bayesian Learning [47], spatial statistics [48] and Markov field models

[17, 49].

Another instance of the trace estimation problem in applications is that of estimat-

ing Schatten p-norms, particularly the nuclear norm, since this norm is used as the

convex surrogate of the matrix rank. The Schatten p-norms appear in convex opti-

mization problems, e.g., in the context of matrix completion [50], in differential privacy

problems [51], and in sketching and streaming models [52]. On the other hand, in uncer-

tainty quantification and in lattice quantum chromodynamics [16, 53], it is necessary to

estimate the trace of the inverse of covariance matrices. Estimating the Estrada index

(trace of exponential function) is another illustration of the problem with applications

16
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in protein indexing [44], statistical thermodynamics [54] and information theory [55].

As mentioned in the previous chapter, the naive way to compute these traces is to

obtain the complete eigendecomposition of the given matrix. A popular approach to

computing the log-determinant is to exploit the Cholesky decomposition [56]. Given

the decomposition A = LL>, the log-determinant of A is log det(A) = 2
∑

i log(Lii).

Computing the Schatten norms in a standard way would typically require the singular

value decomposition (SVD) of the matrix. These methods have cubic computational

complexity (in terms of the matrix dimension, i.e., O(n3) cost) in general, and are not

viable for large scale applications. In this chapter, we study inexpensive methods for

accurately estimating these traces for large matrices.

We study the method called “Stochastic Lanczos Quadrature” (SLQ) for approxi-

mating the trace of functions of large matrices [14, 15]. The method combines three key

ingredients. First, the stochastic trace estimator [19] discussed in the previous chapter

is considered for approximating the trace. Next, the bilinear form that appears in the

trace estimator is expressed as a Riemann-Stieltjes integral, and the Gauss quadrature

rule is used to approximate this integral. Finally, the Lanczos algorithm is used to ob-

tain the weights and the nodes of the quadrature rule. We establish multiplicative and

additive approximation error bounds for the trace obtained by using the method. We

show that the Lanczos Quadrature approximation has faster convergence rate compared

to popular methods such as those based on Chebyshev or Taylor series expansions. The

analysis can be extended to any matrix functions that are analytic inside a closed in-

terval and are analytically continuable to an open Bernstein ellipse [57]. We consider

several important trace estimation problems and their applications.

Related Work

A plethora of methods have been developed in the literature to deal with trace estimation

problems. In the following, we discuss some of the works that are closely related to

SLQ, particularly those that invoke the stochastic trace estimator. The stochastic trace

estimator has been employed for a number of applications in the literature, for example,

for estimating the diagonal of a matrix, for counting eigenvalues inside an interval [58],

and for estimating the numerical rank [2, 3]. For the log-determinant computation,

a few methods have been proposed, which also invoke the stochastic trace estimator.
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These methods differ in the approach used to approximate the log function. Article [17]

used the Chebyshev polynomial approximations for the log function. The log function

was approximated using the Taylor series expansions in [59]. Article [49] provided

an improved analysis for the log-determinant computations using these Taylor series

expansions. Aune et. al [48] adopted the method proposed in [60] to estimate the log

function. Here, the Cauchy integral formula of the log function is considered and the

Trapezoidal rule is invoked to approximate the integral. This method is equivalent to

using a rational approximation for the function. The method requires solving a series

of linear systems and is generally expensive.

Not many fast algorithms are available in the literature to approximate the nuclear

norm and Schatten-p norms; see [52, 61] for discussions. Article [62] extends the idea of

using Chebyshev expansions developed in [58, 17] to approximate the trace of various

matrix functions including Schatten norms, the Estrada index and the trace of matrix

inverse. Related articles on estimating the trace of matrix inverse and other matrix

functions are [16, 53].

2.2 Trace estimation problems

We begin by first discussing a few trace estimation problems that arise in certain appli-

cation areas.

Log-determinant: As previously mentioned, the log-determinants have numerous

applications in machine learning and related fields. The logarithm of the determinant

of a given positive definite matrix A ∈ Rn×n, is equal to the trace of the logarithm of

the matrix, i.e.,

log det(A) = tr(log(A)) =
n∑
i=1

log(λi).

So, estimating the log-determinant of a matrix is equivalent to estimating the trace of

the matrix function f(A) = log(A).

Suppose the positive definite matrixA has its eigenvalues inside the interval [λmin, λmax],

then the logarithm function f(t) = log(t) is analytic over this interval. When comput-

ing the log-determinant of a matrix, the case λmin = 0 is obviously excluded, where
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the function has its singularity. The Lanczos algorithm requires the input matrix to

be symmetric. If A is non-symmetric, we can either consider the matrix1 A>A, since

log det(ATA) = 2 log |det(A)|.

Log-likelihood: The problem of computing the likelihood function occurs in appli-

cations related to Gaussian processes [45]. Maximum Likelihood Estimation (MLE)

is a popular approach used for parameter estimation when high dimensional Gaussian

models are used, especially in statistical machine learning. The objective in parameter

estimation is to maximize the log-likelihood function with respect to a hyperparameter

vector ξ:

log p(z | ξ) = −1

2
z>S(ξ)−1z − 1

2
log detS(ξ)− n

2
log(2π), (2.1)

where z is the data vector and S(ξ) is the covariance matrix parameterized by ξ. The

second term (log-determinant) in (2.1) can be computed by using the SLQ method. We

observe that the first term in (2.1) resembles the quadratic form that appears in the

trace estimator, and it can be also computed by using the Lanczos Quadrature method.

That is, we can estimate the term z>S(ξ)−1z using m steps of the Lanczos algorithm

applied to z/‖z‖ as the starting vector, then compute the quadrature rule for the inverse

function f(t) = t−1, and rescale the result by ‖z‖2.

Schatten p-norms: Given an input matrix X ∈ Rd×n, the Schatten p-norm of X is

defined as ‖X‖p =

(∑r
i=1 σ

p
i

)1/p

i, where the σi’s are the singular values of X and r

its rank. The nuclear norm is the Schatten 1-norm so it is just the sum of the singular

values. Estimating the nuclear norm and the Schatten p-norms of large matrices has

many applications as seen earlier. Suppose we define a positive semidefinite matrix A

as1 A = X>X or A = XX>. Then, the Schatten p-norm of X is defined as

‖X‖p =

( r∑
i=1

λ
p/2
i

)1/p

= tr(Ap/2).

Hence, Schatten p-norms (the nuclear norm being a special case with p = 1) are the

traces of matrix functions of A with f(t) = tp/2.

1The matrix product need not be formed explicitly since the Lanczos algorithm requires only matrix
vector products.
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Spectral Density: Next, we consider computing the spectral density of a matrix [63],

a very common problem in solid state physics. The spectral density of matrix, also

known as Density of States (DOS) in physics, is a probability density distribution that

measures the likelihood of finding eigenvalues of the matrix at a given point on the real

line. Formally, the spectral density of a matrix is expressed as a sum of delta functions

of the eigenvalues of the matrix. That is,

φ(t) =
1

n

n∑
i=1

δ(t− λi),

where δ is the Dirac distribution or Dirac δ-function. This is not a proper function

but a distribution and it is clearly not practically computable as it is defined. What is

important is to compute a smoothed or approximate version of it that does not require

computing eigenvalues, and several inexpensive methods have been proposed for this

purpose, [64, 63]. Recently, the DOS has been used in applications such as eigenvalue

problem, e.g., for spectral slicing, for counting eigenvalues in intervals (‘eigencounts’)

[58], and for estimating ranks [2, 3].

Article [63] reviews a set of inexpensive methods for computing the DOS. We will

further discuss the concept of DOS and its applications in Chapter 3.

Eigencount and Numerical Rank: Next, we consider counting eigenvalues located

in a given interval (Eigencount) and the related problem of estimating the numerical

rank of a matrix. Estimating the number of eigenvalues η[a,b] located in a given interval

[a, b] of a large sparse symmetric matrix is a key ingredient of effective eigensolvers [58],

because these eigensolvers require an estimate of the dimension of the eigenspace to

compute to allocate resources and tune the method under consideration. Estimating

the numerical rank rε = η[ε,λ1] is another closely related problem that occurs in machine

learning and data analysis applications such as Principal Component Analysis (PCA),

low rank approximations, and reduced rank regression [2, 3]. Both of these problems

can be viewed from the angle of estimating the trace of a certain eigen-projector, i.e.,

the number of eigenvalues η[a, b] in [a, b] satisfies:

η[a,b] = tr(P ), where P =
∑

λi ∈ [a, b]

uiu
>
i .
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We can interpret P as a step function of A given by

P = h(A), where h(t) =

{
1 if t ∈ [a, b]

0 otherwise
. (2.2)

The problem then is to find an estimate of the trace of h(A). A few inexpensive methods

are proposed in [58, 2, 3] to approximately compute this trace. We can also compute

the eigencount from the spectral density since

η[a, b] =

∫ b

a

∑
j

δ(t− λj)dt ≡
∫ b

a
nφ(t)dt. (2.3)

The problem of numerical rank estimation is studied in chapters 3 and 4, where various

methods are presented to compute the rank efficiently.

Other Applications: Other frequent matrix function trace estimation problems in-

clude estimating the trace of a matrix inverse and the Estrada index.

Trace of a matrix inverse: The matrix inverse trace estimation problem amounts to

computing the trace of the inverse function f(t) = t−1 of a positive definite matrix

A ∈ Rn×n, whose eigenvalues lie in the interval [λmin, λmax] with λmin > 0. This problem

appears in uncertainty quantification and in lattice quantum chromodynamics [16, 53],

where it is necessary to estimate the trace of the inverse of covariance matrices.

Estrada index: Estimation of the Estrada index of graphs is popular in computational

biology. This problem accounts to estimating the trace of the exponential function, i.e.,

f(t) = exp(t). Note that, here the matrix A is the adjacency matrix of a graph, which

need not be positive definite in general. However, the matrix exp(A) is always positive

definite and our method and theory are applicable in this case.

2.3 Stochastic Lanczos Quadrature

The Lanczos Quadrature method was developed by Gene Golub and his collaborators

in a series of articles [14, 15]. The idea of combining the stochastic trace estimator with

the Lanczos Quadrature method appeared in [14] for estimating the trace of the inverse

and the determinant of matrices. Given a symmetric positive definite matrix A ∈ Rn×n,
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we wish to compute the trace of the matrix function f(A), i.e., the expression given by

(1.1), where we assume that the function f is analytic inside a closed interval containing

the spectrum of A. To estimate the trace, we invoke the stochastic trace estimator [19],

which we discussed in the previous chapter. Recall that the method estimates the trace

tr(f(A)) by generating random vectors ul, l = 1, . . . ,nv, with Rademacher distribution

(vectors with ±1 entries of equal probability), forming unit vectors vl = ul/‖ul‖2, and

then computing the average over the samples v>l f(A)vl:

tr(f(A)) ≈ n

nv

nv∑
l=1

v>l f(A)vl. (2.4)

Hence, for computing the trace we only need to estimate the scalars of the form v>f(A)v,

and the explicit computation of f(A) is never needed.

The scalar (quadratic form) quantities v>f(A)v are computed by transforming them

to a Riemann-Stieltjes integral, and then employing the Gauss quadrature rule to ap-

proximate this integral. Consider the eigen-decomposition of A as A = QΛQ>. Then,

we can write the scalar product as,

v>f(A)v = v>Qf(Λ)Q>v =
n∑
i=1

f(λi)µ
2
i , (2.5)

where µi are the components of the vector Q>v. The above sum can be considered as

a Riemann-Stieltjes integral given by,

I = v>f(A)v =

n∑
i=1

f(λi)µ
2
i =

∫ b

a
f(t)dµ(t), (2.6)

where the measure µ(t) is a piecewise constant function defined as

µ(t) =


0, if t < a = λ1,∑i−1

j=1 µ
2
j , if λi−1 ≤ t < λi, i = 2, . . . , n,∑n

j=1 µ
2
j , if b = λn ≤ t,

(2.7)

assuming that the eigenvalues λi are ordered nondecreasingly. Next, the integral can be
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estimated using the Gauss quadrature rule [15]

∫ b

a
f(t)dµ(t) ≈

m∑
k=0

ωkf(θk), (2.8)

where {ωk} are the weights and {θk} are the nodes of the (m+1)-point Gauss quadrature,

which are unknowns and need to be determined.

An elegant way to compute the nodes and the weights of the quadrature rule is to use

the Lanczos algorithm [15]. For a given real symmetric matrix A ∈ Rn×n and a starting

vector w0 of unit 2-norm, the Lanczos algorithm generates an orthonormal basis Wm+1

for the Krylov subspace Span{w0, Aw0, . . . , A
mw0} such that W>m+1AWm+1 = Tm+1,

where Tm+1 is an (m + 1) × (m + 1) tridiagonal matrix. For details see [56]. The

columns wk of Wm+1 are related as

wk = pk−1(A)w0, k = 1, . . . ,m,

where pk are the Lanczos polynomials. The vectors wk are orthonormal, and we can

show that the Lanczos polynomials are orthogonal with respect to the measure µ(t) in

(2.7); see Theorem 4.2 in [15]. Therefore, the nodes and the weights of the quadrature

rule in (2.8) can be computed as the eigenvalues and the squares of the first entries of

the eigenvectors of Tm+1. Then, we can approximate the quadratic form (2.5) as,

v>f(A)v ≈
m∑
k=0

τ2
kf(θk) with τ2

k =
[
e>1 yk

]2
, (2.9)

where (θk, yk), k = 0, 1, ...,m are eigenpairs of Tm+1 by using v as the starting vector

w0. Thus, the trace of matrix function f(A) can be computed as,

tr(f(A)) ≈ n

nv

nv∑
l=1

(
m∑
k=0

(τ
(l)
k )2f(θ

(l)
k )

)
, (2.10)

where (θ
(l)
k , τ

(l)
k ), k = 0, 1, ...,m are eigenvalues and the first entries of the eigenvectors

of the tridiagonal matrix T
(l)
m+1 corresponding to the starting vectors vl, l = 1, . . . ,nv.

This method is far less costly than computing the eigenvalues of the matrix A for the



24

purpose of computing the trace via (1.1). The Stochastic Lanczos Quadrature algorithm

corresponding to this procedure is summarized in Algorithm 1.

Algorithm 1 Trace of a matrix function by SLQ using the Lanczos algorithm

Input: SPD matrix A ∈ Rn×n, function f , degree m and nv.

Output: Approximate trace Γ of f(A).

for l = 1 to nv do

1. Generate a Rademacher random vector ul and form unit vector vl = ul/‖ul‖2
2. T = Lanczos(A, vl,m+ 1); that is, apply m+ 1 steps of Lanczos to A with vl as

the starting vector.

3. [Y,Θ] = eig(T ) and compute τk = [e>1 yk] for k = 0, . . . ,m

4. Γ← Γ +
∑m

k=0 τ
2
kf(θk).

end for

Output Γ = n
nv

Γ.

2.4 Analysis

One of the main contributions of this chapter is the derivation of multiplicative error

bounds for approximating the trace of a matrix function using SLQ. Additive error

bounds are also established for the log-determinant approximation of a positive definite

matrix and the log-likelihood function estimation. The nuclear norm and Schatten-p

norms estimation of a general matrix is discussed in the latter part of the section. First,

we give the following definition: A Bernstein ellipse Eρ is an ellipse on the complex

plane with focii at −1, 1 and major semi-axis (ρ + ρ−1)/2, with ρ > 1 [57]. It can

be viewed as a mapping of the circle C(0, ρ) (center at zero and radius ρ) using the

Joukowsky transform (z + z−1)/2. Hence we can have two values of ρ that are inverses

of each other, which give the same ellipse. Following is our main result:

Theorem 1 Consider a symmetric positive definite matrix A ∈ Rn×n with eigenvalues

in [λmin, λmax] and condition number κ = λmax/λmin. Let f be a function analytic

in [λmin, λmax] and be either positive or negative (i.e., does not cross zero) inside this

interval. Denote by mf the absolute minimum value of f in the interval. Assume that

f is analytically continuable in an open Bernstein ellipse Eρ encompassing the interval,
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with foci λmin, λmax and sum of the two semi-axes ρ, such that |f(z)| ≤ Mρ for all

z ∈ Eρ. Let ε, η be constants in (0, 1). Then for SLQ parameters satisfying:

• m ≥ 1
2 log

(
4Mρ(λmax−λmin)

εmρ(ρ2−1)

)
/ log(ρ) number of Lanczos steps, and

• nv ≥ (24/ε2) log(2/η) number of starting Rademacher vectors,

the output Γ of the Stochastic Lanczos Quadrature method is such that:

Pr

[
|tr(f(A))− Γ| ≤ ε |tr(f(A))|

]
≥ 1− η. (2.11)

In particular for ρ = (
√
κ + 1)/(

√
κ − 1), for which the function of interest is analytic

inside Eρ, we have m ≥ (
√
κ/4) log(K/ε), with K = (λmax−λmin)(

√
κ−1)2Mρ/(

√
κmf ).

To prove the theorem, we first derive error bounds for the Lanczos Quadrature

approximation (which gives the convergence rate), using the facts that an (m+1)-point

Gauss Quadrature rule is exact for any 2m+ 1 degree polynomial and that the function

is analytic inside an interval and is analytically continuable in a Bernstein ellipse. We

then combine this bound with the error bounds for the stochastic trace estimator to

obtain the above result.

Convergence rate for the Lanczos Quadrature

In order to prove Theorem 1, we first establish the convergence rate for the Lanc-

zos Quadrature approximation of the quadratic form. Recall that the quadratic form

v>f(A)v can be written as a Riemann Stieltjes integral I, as given in (2.6). Let Im

denote the (m+1)-point Gauss Quadrature rule that approximates the integral I, given

by

Im =
m∑
k=0

ωkf(θk),

where {ωk} are the weights and {θk} are the nodes, computed by using m+ 1 steps of

the Lanczos algorithm. The well known error analysis for the Gauss Quadrature rule is

given by [15],

|I − Im| =
f (2m+2)(ζ)

(2m+ 2)!

∫ b

a

[ m∏
k=0

(t− θk)
]2

dµ(t), (2.12)
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for some a < ζ < b. However, this analysis might not be useful for our purpose,

since the higher derivatives of both the logarithm and the square root function become

excessively large in the interval of interest. Hence, in this work, we establish improved

error analysis for the Lanczos Quadrature approximations, using some classical results

developed in the literature, with the fact that functions of interest are analytic over a

certain interval. We begin with the following result.

Theorem 2 Let a function g be analytic in [−1, 1] and analytically continuable in the

open Bernstein ellipse Eρ with foci ±1 and sum of major and minor axis equal to ρ > 1,

where it satisfies |g(z)| ≤Mρ. Then the (m+1)-step Lanczos Quadrature approximation

satisfies

|I − Im| ≤
4Mρ

(ρ2 − 1)ρ2m
. (2.13)

Proof. We follow a similar argument developed in [65] that estimates the error

of Gaussian quadratures for a Riemann integral. The result and the proof strategy are

usually covered in standard textbooks, e.g., [57, Thm. 19.3]. In our case, the integral

is a Riemann-Stieltjes integral with respect to a specific measure given in (2.7). As a

result, the bound admits the same rate but with a different constant.

For the given function g that is analytic over the interval [−1, 1], consider the 2m+1

degree Chebyshev polynomial approximation of g(t), i.e.,

P2m =

2m+1∑
j=0

ajTj(t) ≈ g(t).

We know that the (m+ 1)-point Gauss Quadrature rule is exact for any polynomial of

degree upto 2m + 1, see [15, Thm. 6.3] or [57, Thm. 19.1]. This can also be deduced

from the error term in (2.12). Hence, the error in integrating g is the same as the error

in integrating g − P2m. Thus, we have

|I − Im| = |I(g − P2m)− Im(g − P2m)| ≤ |I(g − P2m)|+ |Im(g − P2m)|

=

∣∣∣∣I( ∞∑
j=2m+2

ajTj(t)

)∣∣∣∣+∣∣∣∣Im( ∞∑
j=2m+2

ajTj(t)

)∣∣∣∣
≤

∞∑
j=2m+2

|aj |
[
|I(Tj)|+ |Im(Tj)|

]
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Next, we obtain bounds for the three terms inside the summation above.

If the function g is analytic in [−1, 1] and analytically continuable in the Bernstein

ellipse Eρ, then for the Chebyshev coefficients we have from Theorem 8.1 in [57] and

eq. (14) in [65],

|aj | ≤
2Mρ

ρj
.

Next, for the Quadrature rule Im(Tj), we have

Im(Tj) =
m∑
k=0

τ2
kTj(θk) ≤

m∑
k=0

|τ2
k ||Tj(θk)| ≤ 1.

The last inequality results from the fact that, for f(t) = 1, the quadrature rule is exact,

and the thus integral is equal to 1 (v>l f(A)vl = v>l vl = 1). Therefore, the weights τ2
k

must sum to 1. The maximum value of Tj inside the interval is 1. Finally, in order to

bound the Riemann-Stieltjes integral I(Tj), we use the following:

I(Tj) = v>Tj(A)v ≤ λmax(Tj(A)) = 1,

by the min-max theorem and ‖v‖ = 1. Therefore,

|I − Im| ≤
∞∑

j=2m+2

2Mρ

ρj
[1 + 1].

Since the Gauss quadrature rule is a symmetric rule [65], the error in integration of

Tj(t) for any odd j will be equal to zero. Thus, we get the result in the theorem

|I − Im| ≤
4Mρ

(ρ2 − 1)ρ2m
.

�

Remark 1 The convergence rate for the Chebyshev polynomial approximation of an

analytic function is O(1/ρm); see Theorem 8.2 in [57]. Hence, the Lanczos Quadrature

approximation is twice as fast as the Chebyshev approximation. Moreover, it is known

that the Gauss quadrature has the maximal polynomial order of accuracy [57].
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Theorem 2 holds for functions that are analytic over [−1, 1]. The functions consid-

ered in this paper such as logarithm, exponential and square root functions are analytic

over [λmin, λmax] for λmin > 0. Hence, we need to use the following transform to get the

right interval.

If f(x) is analytic on [λmin, λmax], then

g(t) = f

[(
λmax − λmin

2

)
t+

(
λmax + λmin

2

)]
is analytic on [−1, 1]. If we denote the error in the Quadrature rule for approximating

the integral of function f as E(f), then we have

E(f) =

(
λmax − λmin

2

)
E(g).

The function g will have its singularity at t0 = α = −κ+1
κ−1 . Hence, we choose the

ellipse Eρ with the semimajor axis length of |α| where g is analytic inside. Then, the

convergence rate ρ will be

ρ = α±
√
α2 − 1 =

√
κ+ 1√
κ− 1

> 1.

The sign is chosen such that ρ > 1. From theorem 2, the error E(g) ≤ 4Mρ/[(ρ
2−1)ρ2m],

where |g(z)| < Mρ inside Eρ. Hence, the error E(f) will be

E(f) =

(
λmax − λmin

2

)
4Mρ

(ρ2 − 1)ρ2m
=

(λmax − λmin)(
√
κ− 1)2Mρ

2
√
κρ2m

,

with ρ defined as above. Thus, for a function f that is analytic on [λmin, λmax] and

Cρ = 2Mρ(λmax − λmin)/(ρ2 − 1) = (λmax − λmin)(
√
κ− 1)2Mρ/(2

√
κ), we have

∣∣∣∣v>f(A)v −
m∑
k=0

τ2
kf(θk)

∣∣∣∣ ≤ Cρ
ρ2m

. (2.14)

Approximation error of the trace estimator

The quadratic form v>f(A)v for which we derived the error bounds in the previous

section comes from the Hutchinson trace estimator. Let us denote this estimator as
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trnv(A) = n
nv

∑nv
l=1 v

>
l Avl. The convergence analysis for the stochastic trace estimator

was developed in [20], and improved in [21] for sample vectors with different probability

distributions. We state the following theorem which is proved in [21].

Theorem 3 Let A be an n × n symmetric positive semidefinite matrix and vl, l =

1, . . . ,nv be random starting vectors sampled from the Rademacher distribution and

scaled to a unit 2-norm. Then, with nv ≥ (6/ε2) log(2/η), we have

Pr [|trnv(A)− tr(A)| ≤ ε|tr(A)|] ≥ 1− η.

The above theorem can be used to bound the trace of any matrix function f(A), if

the function is either positive or negative inside the spectrum interval. Therefore, the

theorem holds for the square root function, its powers, and the exponential. However,

for the logarithm function, different scenarios occur depending on the spectrum, which

will be discussed later. Let Γ be the output of the Stochastic Lanczos Quadrature

method to estimate the trace of such functions, given by

Γ =
n

nv

nv∑
l=1

(
m∑
k=0

(τ
(l)
k )2f(θ

(l)
k )

)
. (2.15)

We need the following lemma.

Lemma 1 Let A ∈ Rn×n be a symmetric positive definite matrix with eigenvalues in

[λmin, λmax] and condition number κ = λmax/λmin, and f be an analytic function in this

interval with |f(z)| ≤ Mρ, for all z inside a Bernstein ellipse Eρ that encompasses the

interval. Then, the following inequality holds:

|trnv(f(A))− Γ| ≤ nCρ
ρ2m

,

where ρ = (
√
κ+1)/(

√
κ−1) and Cρ = 2Mρ(λmax−λmin)/(ρ2−1) = (λmax−λmin)(

√
κ−

1)2Mρ/(2
√
κ).
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Proof. The lemma follows from the equation (2.14). We have

|trnv(f(A))− Γ| =
n

nv

∣∣∣∣ nv∑
l=1

v>l f(A)vl −
nv∑
l=1

I(l)
m

∣∣∣∣
≤ n

nv

nv∑
l=1

|v>l f(A)vl − I(l)
m |

≤ n

nv

nv∑
l=1

Cρ
ρ2m

=
nCρ
ρ2m

.

�

Now, we are ready to prove Theorem 1. Based on the condition of m,

log
K

ε
≤ 4m√

κ
≤ 2m log

(√
κ+ 1√
κ− 1

)
.

Therefore,
K

ε
≤ ρ2m and hence

Cρ
ρ2m

≤ ε

2
fmin(λ),

where fmin(λ) ≡ mf is the absolute minimum of the function in the interval [λmin, λmax].

This gives us the lower bound on the degree m in the Theorem. Then, from Lemma 1

we have

|trnv(f(A))− Γ| ≤ εn

2
fmin(λ) ≤ ε

2
|tr(f(A))|. (2.16)

From Theorem 3, we have

Pr
[
|tr(f(A))− trnv(f(A))| ≤ ε

2
|tr(f(A))|

]
≥ 1− η. (2.17)

Combining the above two inequalities (2.16) and (2.17) leads to the result in Theorem

1:

1− η ≤ Pr
[
|tr(f(A))− trnv(f(A))| ≤ ε

2
|tr(f(A))|

]
≤ Pr

[
|tr(f(A))− trnv(f(A))|+ |trnv(f(A))− Γ| ≤ ε

2
|tr(f(A))|+ ε

2
|tr(f(A))|

]
≤ Pr [|tr(f(A))− Γ| ≤ ε |tr(f(A))|] .

For comparison, note that for Chebyshev approximations [17], the required degree of
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the polynomial is m = Θ(
√
κ log κ

ε ) and for Taylor approximations [49], m = O(κ log κ
ε ).

Recall from Remark 1, the Lanczos algorithm is superior to the Chebyshev expansions

because the former approximation converges twice as fast as does the latter. Clearly, the

Lanczos approximation also converges faster than the Taylor approximation. Theorem 1

can be used to establish the error bounds for approximating the log-determinants and

the Schatten p-norms. The quality and the complexity of the algorithms depend on

the condition number κ, since matrix function approximations become harder when

matrices become more ill-conditioned, which requires higher degree approximations.

Bounds for Log-determinant

For the logarithm function, we encounter three different scenarios depending on the

spectrum of the matrix. The first case is when λmax < 1, log(A) is negative definite

and the log-determinant will always be negative. Thus, the conditions of Theorem 1 are

satisfied. Similarly, Theorem 1 holds in the second case when λmin > 1, since log(A) is

positive definite. In the third case when λmin < 1 and λmax > 1, however, we cannot

obtain multiplicative error bounds of the form given in Theorem 1, since the log function

will cross zero inside the interval. In the worst case, the log-determinant can be zero.

One simple workaround to avoid this case is to scale the matrix such that its eigenvalues

are either all smaller than 1 or all greater than 1; however, such an approach requires

the computation of the extreme eigenvalues of A. The following corollary gives additive

error bounds without scaling; it holds for any SPD matrix.

Corollary 1 Given ε, η ∈ (0, 1), a SPD matrix A ∈ Rn×n with its eigenvalues in

[λmin, λmax], and condition number κ = λmax/λmin, for SLQ parameters:

• m ≥ (
√

3κ/4) log(K1/ε) number of Lanczos steps, and

• nv ≥ (24/ε2) log(1 + κ))2 log(2/η) number of starting vectors,

where K1 = 5κ log(2(κ+ 1))/
√

2κ+ 1, we have

Pr

[
|log det(A)− Γ| ≤ εn

]
≥ 1− η, (2.18)

where Γ is the output of the Stochastic Lanczos Quadrature method for log-determinant

computation.
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Proof. The proof of the Corollary is on the similar lines as the proof of Theorem 1.

In the logarithm case, Theorem 2 still holds, however, we need to choose a smaller

ellipse (smaller α) since the log function goes to infinity near the singularity. We choose

α = (κ+ 1)/κ, then ρ = (
√

2κ+ 1 + 1)/(
√

2κ+ 1− 1). For theorem 3, we consider the

fact that, if B = A
λmax+λmin

, then

log detA = log detB + n log(λmax + λmin).

Since the matrix B has its eigenvalues inside (0, 1), the logarithm function is negative

and we hence can apply Theorem 3 with f(A) = log
(

A
λmax+λmin

)
, and then add and

subtract n log(λmax + λmin) to get an inequality of the form (2.17). To compute the

parameters in Theorem 2, we consider this function f(t) = log
(

t
λmax+λmin

)
, and the

ellipse Eρ where the function is analytic with ρ as defined above. Then, we have ρ2−1 =

(4
√

2κ+ 1)/(
√

2κ+ 1− 1)2 and Mρ is computed as,

max
z∈Eρ

| log(z)| ≤ max
z∈Eρ

√
(log |z|)2 + π2

=
√

(log |1/2κ|)2 + π2 ≤ 5 log(2(κ+ 1)) = Mρ.

The first inequality comes from the fact | log(z)| = | log |z|+i arg(z)| ≤
√

(log |z|)2 + π2.

The ellipse Eρ is defined with foci at 1/(κ+ 1) and κ/(κ+ 1). The maximum occurs at

end point z0 = 1/(2κ). As in the proof of Theorem 1, we have

E(f) =

(
κ− 1

κ+ 1

)
2Mρ

(ρ2 − 1)ρ2m
≤ 5κ log(2(κ+ 1))

2
√

2κ+ 1ρ2m
.

The K1 value is obtained by setting

n5κ log(2(κ+ 1))

2
√

2κ+ 1ρ2m
≤ εn

2
.

The lower bound for mf is simplified using the fact
√

2κ+ 1 ≤
√

3κ. We can then

conclude the corollary using |log detB| ≤ n log(1 + κ) and choosing ε = ε/ log(1 + κ) in

Theorem 3. �
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Bounds for Log-likelihood function

Recall the log-likelihood function defined in (2.1). The log-determinant term in it can be

bounded as above. The first term z>S(ξ)−1z is computed using the Lanczos quadrature

method with z/‖z‖ as the starting vector for the Lanczos algorithm. The following

corollary gives the error bound for the log-likelihood function estimation by SLQ, which

follows from Theorem 1 and Corollary 1.

Corollary 2 Given a data vector z ∈ Rn, a covariance matrix S(ξ) ∈ Rn×n with

hyperparameter ξ and its eigenvalues in [λmin, λmax], and constants ε, η ∈ (0, 1), for

SLQ parameters:

• m1 ≥ (
√

3κ/4) log(K1/ε), m2 ≥ (
√

3κ/4) log(K2/ε) and

• nv ≥ (24/ε2)(log(1 + κ))2 log(2/η),

where K1 is defined in Corollary 1 and K2 = ‖z‖2(κ − 1)(
√

2κ− 1 − 1)2/
√

2κ− 1, we

have

Pr

[
|log p(z | ξ)− Γ| ≤ ε(n+ 1)

]
≥ 1− η, (2.19)

where Γ = −Γ1 − Γ2 − n
2 log(2π), Γ1 is the output of SLQ with parameters m1 and nv,

and Γ2 is the output of the Lanczos Quadrature method for approximating z>S(ξ)−1z

with m2 steps of Lanczos and scaled by ‖z‖2.

Proof. To prove the Corollary, we obtain bounds for the two quantities Γ1 and Γ2.

We bound the log-determinant term Γ1 obtained by SLQ using Corollary 1. Bounds

of Γ2, the Lanczos quadrature approximation of z>S(ξ)−1z, can be computed using

Theorem 2 as follows. We again need to choose a smaller ellipse Eρ where the function

is analytic, since the function f(t) = t−1 also goes to infinity near singularity. We set

α = κ/(κ−1), then ρ = (κ+
√

2κ− 1)/(κ−1) and ρ2−1 = (4
√

2κ− 1)/(
√

2κ− 1−1)2.

For the inverse function, the maximum must occur on the real line, particularly at −α
for g(z) or at λmin/2 for f(z), so, Mρ = 2/λmin. Then,

E(f) =
(κ− 1)(

√
2κ− 1− 1)2

√
2κ− 1ρ2m

.

We will have a scaling ‖z‖2. We get the bounds by setting ‖z‖2E(f) ≤ ε. �
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We can also compute the error bounds for approximating the trace of matrix inverse

by SLQ using the above proof.

Schatten p-norms estimation

When estimating the nuclear and Schatten p-norms, we encounter the following issue

when approximating the square root function. In order to obtain strong theoretical

results (exponential convergence) for a given function f(t), the function must be analytic

in the spectrum interval. However, the square root function is non-differentiable at t = 0.

This will be a major stumbling block for rank-deficient matrices since the interval of

eigenvalues now contains zero.

Shifting the Spectrum: To overcome the issue, we propose the following remedy,

which is based on the key observation, proper to the computation of nuclear norm, that

the small and zero singular values do not contribute much to the norm itself. In other

words, the nuclear norm of a matrix depends mainly on the top singular values.

The idea is then to shift the spectrum of the matrix by a small δ > 0 such that no

eigenvalues of the matrix A are equal to zero. That is, we replace A by A + δI, such

that the eigenvalues of the new shifted matrix are λi + δ. For the square root function,

the error is given by, √
λi + δ −

√
λi =

δ√
λi + δ +

√
λi
.

Hence, the error in the large eigenvalues will be small. The error in the nuclear norm

will be
n∑
i=1

√
λi + δ −

n∑
i=1

√
λi =

n∑
i=1

δ√
λi + δ +

√
λi
. (2.20)

For the shifted matrix, the eigenvalues will be in the interval [δ, λmax + δ]. Now, the-

orem 1 holds in this interval (square root function will be positive) and we can obtain

the approximation error bounds. The error due to shifting is small, and can also be

corrected using the Taylor series expansion of the square root function (details omitted).

Algorithm 2 will be better suited for nuclear norm estimation.

Bounds for Schatten p-norms To summarize, if the input matrix has full rank

(λmin > 0), then Theorem 1 is directly applicable, since the square root function is
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positive and analytic in the interval. For rank deficient matrices (has zero singular

values), we will encounter the above problem, and we need to shift the spectrum by δ.

From (2.20), we can upper bound the error due to shifting by n
√
δ. Thus, the shift δ is

chosen such that this error due to shifting is at most ε‖X‖pp. Here, the value of ‖X‖p
can be taken to be roughly poly(n). We can then compute ‖X‖p of the shifted matrix

using SLQ. We have the following general result.

Corollary 3 Given ε, η ∈ (0, 1), a matrix X ∈ Rd×n with its singular values in [σmin, σmax],

we consider the SPD matrix A = XTX (not formed explicitly) with its condition number

κ = σ2
max/σ

2
min, for SLQ parameters:

• m ≥ (
√
κ/4) log(K3/ε) number of Lanczos steps, and

• nv ≥ (24/ε2) log(2/η) number of starting vectors,

where K3 =
σ2
min(κ+1)p/2(κ2−1)√

κ
, we have

Pr

[ ∣∣‖X‖pp − Γp
∣∣ ≤ ε‖X‖pp] ≥ 1− η, (2.21)

where Γ is the output of the Stochastic Lanczos Quadrature method for Schatten p norm

computation.

Proof. Theorem 1 gives the above error bound. We consider the function f(t) = tp/2

applied to A = XTX (not formed explicitly). We can also consider the G-K-B algorithm.

We choose ρ = (
√
κ + 1)/(

√
κ − 1) as in the theorem since g(t) is analytic inside the

ellipse Eρ. Then, mf = σpmin and Mρ =
(
σ2

max + σ2
min

)p/2
, since the maximum occurs at

the right end of the ellipse. Substituting these values in the theorem, we get the above

result. �

2.5 Numerical Experiments

Log-determinant computation: In this section, we first present four examples to

illustrate the performance of the SLQ method for logdet computation, and compare the

performance against other related stochastic methods.
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Figure 2.1: Performance comparisons between SLQ, Chebyshev and Taylor series
expansions.

In Figure 2.1(a), we compare the relative errors obtained by the SLQ method for

different degrees chosen, and compare it against the stochastic Chebyshev [17] (imple-

mented by the authors) and the stochastic Taylor series expansions method [59]. We

consider the sparse matrix california (a graph Laplacian matrix) of size 9664× 9664,

nnz ≈ 105 and κ ≈ 5× 104 from the SuiteSparse matrix collection [66]. The number of

starting vectors nv = 100 in all three cases. The figure shows that our method is supe-

rior in accuracy compared to the other two methods. With just a degree of around 50,

we get 4 digits of accuracy, while Chebyshev expansions give only 1-2 digits of accuracy

and Taylor series expansions are very inaccurate for such low m.

Next, we evaluate the performance of our method with respect to the condition
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number of the matrix. We consider a Hadamard matrix H of size 8192 and form

the test matrix as HDH>, where D is a diagonal matrix with entries such that the

desired condition number is obtained. Figure 2.1(b) plots the relative errors obtained

by the three stochastic methods for the log-determinant estimations of the matrices

with different condition numbers. The degree and the number of starting vectors used

in all three cases were m = 50 and nv = 30.

In the third experiment, we compare the runtime of the three algorithms for log-

determinant estimation of large sparse matrices. The matrices have used 10% nonzeros

in each row. An example Matlab code is the following: N=20000; rho = 10/N; A =

sprand(N,N,rho); A = A’*A + lmin*speye(N). We also include the runtime for the

Cholesky decomposition. For a fair comparison, we chose m =
√
κ for the Chebyshev

method, m =
√
κ/2 for SLQ and m = 4

√
κ for Taylor series (will be less accurate

since we need m ≈ κ for similar accuracy). Figure 2.1(c) plots the runtime of the four

algorithms for different matrix sizes. We observe that the runtime of the SLQ method

is equal to or less than the runtime of the Chebyshev method. Note also that, both

Chebyshev and Taylor methods require computation of the extreme eigenvalues. The

relative errors we obtained by SLQ in practice are also lower than that obtained by the

Chebyshev method. These two methods are both significantly faster than the one based

on Cholesky.

For very large matrices (∼ 106 and above), it is impractical to compute the exact

log-determinants. To gauge the approximation quality, we approximate the estimator

variance by using sample variance and show the standard errors. Figure 2.1(d) plots the

log-determinants estimated and the error bars obtained for different number of starting

vectors for the matrix webbase-1M (Web connectivity matrix) of size 106×106 obtained

from SuiteSparse database [66]. For Lanczos Quadrature, we chose degree m = 30, and

for Chebyshev m = 60. The width of the error bars gives us a rough idea of how close

the estimation might be to the trace of f(A) approximated by the respective methods.

Nuclear norm estimation: Next, let us consider the estimation of the nuclear norm,

and employ our SLQ algorithm for the nuclear norm estimation of real datasets.

Table 2.1 lists the approximate nuclear norm estimated by our method for a set of

matrices from various applications. All matrices were obtained from SuiteSparse[66] and
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Table 2.1: Estimation of the sum of singular values of various matrices

Matrices size n m Exact Sum Estimated Sum Time (secs) SVD time
Erdos992 6100 40 3292.06 3294.5 1.05 876.2 secs
deter3 7047 30 16518.08 16508.46 1.62 1.3 hrs
California 9664 100 3803.74 3803.86 8.32 4.17 mins
FA 10617 150 1306.79 1312.8 23.13 1.5 hrs
qpband 20000 60 26708.14 26710.1 0.35 2.9 hrs

are sparse. We increment the degree m until we achieve 3-4 digit accuracy. The degree

used and the approximate sum obtained are listed in the table along with the exact

sum and the time taken (averaged over 5 trials) by our algorithm. In all experiments,

the number of starting vectors nv = 30. In addition, we also list the time taken to

compute only the top 2000 singular values of each matrices (computed using MATLAB’s

svds function which relies on ARPACK) in order to provide a rough illustration of the

potential computational gain of our algorithm over partial SVD.

Maximum Likelihood estimation for GRF: We now test our method for max-

imum likelihood (ML) estimation of Gaussian Random Fields (GRF). To illustrate

the use of log-determinant calculation in GRFs, we simulate one such field by using

the Wendland covariance function [45] with smoothness q = 0 on a 900 × 1200 grid

(n = 1.08 × 106); see fig. 2.2(a). To better demonstrate the fine details of this highly

non-smooth data, we have zoomed into the middle 300× 400 grid and shown only this

part. Next, we randomly sample ten percent of the data and used them to estimate the

length scale of the function. These training data are the non-white pixels in fig. 2.2(b).

We compute a local log-likelihood curve (as in (2.1)) shown in fig. 2.2(c) using SLQ with

different values for the hyperparameter, which suggests a peak at 50. That is, MLE es-

timates using SLQ suggests the hyperparameter value to be 50. This coincides with

the true value used for simulation. The log-determinants therein were computed using

100 Lanczos steps and 100 random vectors. Because the covariance matrix is multilevel

Toeplitz, the matrix-vector multiplications were carried out through circulant embed-

ding followed by FFT, which resulted in an O(n log n) cost [56]. With the estimated

length scale, we perform a prediction calculation for the rest of the data (white pixels

in fig. 2.2(b)) and show the predicted values, together with the ten percent used for
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(a) (b)

(c) (d)

Figure 2.2: Estimation and prediction for a Gaussian random field.

training, in fig. 2.2(d). We observe that the pattern obtained from the predicted val-

ues appears quite similar to the original data pattern. The relative difference between

fig. 2.2(a) and fig. 2.2(d) is 0.27.

Spatial Analysis using GMRF for CO2 data: In the final experiment, we consider

the Gaussian Markov Random field (GMRF) [45] parameter estimation problem for real

spatial data with missing entries. We use a global dataset of column-integrated CO2

obtained from http://niasra.uow.edu.au/cei/webprojects/UOW175995.html. The

values of column integrated CO2 are on a grid of 1.25◦ longitude by 1◦ latitude, which

results in a total of 288 × 181 = 52, 128 grid cells (matrix size) on the globe. The

dataset has 26, 633 observations. We assume GRMF model for the data and use MLE

to predict the remaining (missing) values. For the GMRF field, we considered the spatial

autoregressive model, i.e., the precision matrix is defined as G(ξ) = ξ4C + ξ2G1 + G2,

where matrices C,G1 and G2 define the neighborhood (four, eight and 16 neighbors,

http://niasra.uow.edu.au/cei/webprojects/UOW175995.html
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Figure 2.3: GMRF interpolation for CO2 data.

respectively) and are sparse [45]. We obtain ML estimates using the SLQ method

to choose the optimal parameter ξ. That is, we sweep through a set of values for

ξ and estimate the log-likelihood for the data given by log p(z | ξ) = log detG(ξ) −
z>G(ξ)z− n

2 log(2π), and determine the parameter ξ that maximizes the log-likelihood.

Figure 2.3(top) shows the sparse observations of the CO2 data across the globe. The

GMRF interpolation with the parameter ξ = 0.2 is given in fig. 2.3(bottom).



Chapter 3

Numerical rank estimation

3.1 Introduction

In many machine learning, data analysis, scientific computations and signal processing

applications, the high dimensional data encountered generally have intrinsically low

dimensional representations. A widespread tool used in these applications to exploit

this low dimensional nature of data is the Principal Component Analysis (PCA) [23].

Other well known techniques such as randomized low rank approximations [67, 7] and

low rank subspace estimations [68] also exploit the ubiquitous low rank character of data.

However, a difficulty with these approaches that is well-recognized in the literature is

that, it is not known in advance how to select the reduced rank k. This problem

is aggravated in the applications of algorithms such as online PCA [69], stochastic

approximation algorithms for PCA [70] and subspace tracking [68], where the dimension

of the subspace of interest changes frequently.

The rank estimation problem also arises in many useful methods employed in fields

such as machine learning for example, where the data matrix X ∈ Rd×n is replaced

with a factorization of the form UV >, where U ∈ Rd×k and V ∈ Rn×k. In these

methods, the original problem is solved by fixing the rank of the unknown matrix to a

preselected value k [71]. Similar rank estimation problems are encountered in reduced

rank regression, when solving numerically rank deficient linear systems of equations

[72], and in numerical methods for eigenvalue problems that are used to compute the

dominant subspace of a matrix, for e.g., subspace iteration.

41
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In the most common situation, the rank k required as input in the above applications

is typically selected in an ad-hoc way. This is because standard rank estimation methods

in the existing literature rely on expensive matrix factorizations such as the QR [73],

LDLT or SVD [56]. Other methods also assume certain asymptotic behavior such

as normal responses, for the input matrices [74, 75]. Many of the rank estimation

methods proposed in the literature focus on specific applications, e.g., in econometrics

and statistics [74], statistical signal processing [76, 75], reduced-rank regression [77],

estimating the dimension of linear systems [78] and others.

Powerful and inexpensive tools from computational linear algebra can be developed

to estimate the approximate ranks of large matrices. In this chapter, we present exam-

ples of such methods. These methods require only matrix-vector products (‘matvecs’)

and are inexpensive compared to traditional methods. In addition, they do not make

any particular statistical, or asymptotic behavior assumptions on the input matrices.

Since the data matrix can be approximated in a low dimensional subspace, the only

assumption is that there is a set of relevant eigenvalues in the spectrum that correspond

to the eigenvectors that span this low dimensional subspace, and that these are well

separated from the noise-related eigenvalues.

3.2 Numerical Rank

The approximate rank or numerical rank of a general d × n matrix X is often defined

by using the closest matrix to X in the 2-norm sense. Specifically, the numerical ε-rank

rε of X, with respect to a positive tolerance ε is

rε = min{rank(B) : B ∈ Rd×n, ‖X −B‖2 ≤ ε}, (3.1)

where ‖ · ‖2 refers to the 2-norm or spectral norm. This standard definition has been

often used in the literature, see, e.g., [79, §2], [72, §3.1]. The ε-rank of a matrix X is

equal to the number of columns of X that are linearly independent for any perturbation

of X with norm at most the tolerance ε. The definition is pertinent when the matrix

X was originally of rank rε < min{d, n}, but its elements have been perturbed by some

small error or when the relevant information of the matrix lies in a lower dimensional

subspace. The input (perturbed) matrix is likely to have full rank but it can be well
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εr

Figure 3.1: Three different scenarios for eigenvalues of PSD matrices

approximated by a rank-rε matrix.

The singular values of X, with the numerical rank rε must satisfy

σrε > ε ≥ σrε+1. (3.2)

It should be stressed that the numerical rank rε is practically significant only when there

is a well-defined gap between σrε and σrε+1 or in the corresponding eigenvalues of the

matrix X>X (also highlighted in [79, 72]). It is important that the rank rε estimated

be robust to small variations of the threshold ε and the eigenvalues of X, and this can

be ensured only if there is a good gap between the relevant eigenvalues and those close

to zero associated with noise.

For illustration, consider the three situations shown in Figure 3.1. The curves shown

in the figure are continuous renderings of simple plots showing eigenvalues λi (y-axis)

of three different kinds of PSD matrices as a function of i (x-axis). The leftmost case is

an idealized situation where the matrix is exactly low rank and the rank is simply the

number of positive eigenvalues. The situation depicted in the middle plot is common

in situations where the same original matrix of rank say rε is perturbed by some small

noise or error. In this case, the approximate rank rε of the matrix can be estimated by

counting the number of eigenvalues larger than a threshold value ε that separates the

spectrum into two distinct well separated sets. The third curve shows a situation when

the perturbation or the noise added overwhelms the small relevant eigenvalues of the

matrix, so there is no clear separation between relevant eigenvalues and the others. In

this case there is no clear-cut way of recovering the original rank.

The matrices related to the applications discussed earlier typically belong to the

second situation and we shall consider only these cases in this paper. Unless there is an

advance knowledge of the noise level or the size of the perturbation, we will need a way



44

to estimate the gap between the small eigenvalues to be neglected and the others. This

issue of selecting the gap, i.e., the parameter ε has been addressed by a few articles in the

signal processing literature, e.g., see [76]. Section 3.4 describes a method to determine

this gap and to choose a value for the threshold ε based on the plot of spectral density

of the matrix. Once the threshold ε is selected, the rank can be estimated by counting

the number of eigenvalues of A that are larger than ε.

3.3 Polynomial filters

In the previous chapter, we saw how the trace of an eigen-projector can be used to

compute the numerical rank of a matrix. We also saw that a projector P can be

viewed as a step function applied to the matrix. We can use the SLQ method to

compute the trace of a step function. In this chapter, the projector P = h(A) in (2.2)

is approximated by ψm(A), where ψm(t) is a ‘filter’ polynomial. In practice, we only

need ψm(t) to transform the larger relevant eigenvalues into a value close to one and the

smaller eigenvalues to a value close to zero. We first consider a simple filter based on

Hermite interpolation, which has a number of advantages relative to the more common

Chebyshev filter.

3.3.1 The McWeeny filter

The McWeeny transform [80] has been used in solid-state physics to develop ‘linear-

scaling’ methods. It starts by scaling and shifting the matrix so that its eigenvalues are

in the interval [0, 1]. This can be achieved by simply defining B = A/λ1, where the

largest eigenvalue λ1 can be inexpensively computed with a few steps of the Lanczos

algorithm [56].

The extended McWeeny filters have been studied in a different context [81]. A

systematic way of generating them is through interpolation in the Hermite sense, using

two integer parameters m0,m1 that define the degree of matching or smoothness at two

points τ0 and τ1 respectively. In the following, we denote by Θ[m0,m1] the interpolating

(Hermite) polynomial that satisfies the following conditions:

Θ[m0,m1](τ0) = 0; Θ′[m0,m1]
(τ0) = · · · = Θ

(m0−1)
[m0,m1]

(τ0) = 0

Θ[m0,m1](τ1) = 1; Θ′[m0,m1]
(τ1) = · · · = Θ

(m1−1)
[m0,m1]

(τ1) = 0.
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Thus, Θ[m0,m1] has degree m0 +m1 − 1 and the two parameters m0 and m1 define the

degree of smoothness at the points τ0 and τ1 respectively. The polynomials Θ[m0,m1]

can be easily determined by standard finite difference tables. The paper [81] also gives

a closed form expression for Θ[m0,m1] when τ0 = −1 and τ1 = 1:

Θ[m0,m1] =

∫ t
−1 (1− s)m1−1(1 + s)m0−1 ds∫ 1
−1 (1− s)m1−1(1 + s)m0−1 ds

. (3.3)

Furthermore, when m0 + m1 > 2 (at least 3 conditions imposed), the function has an

inflexion point at :

t =
m0 −m1

m0 +m1 − 2
.

When translated back to the interval [0, 1] this point becomes (t + 1)/2 = (m0 −
1)/(m0 +m1 − 2). See more details in [2].

3.3.2 Chebyshev filters

Chebyshev polynomials are commonly used to expand the step function h, i.e., h(t) is

approximately expanded as :

h(t) ≈
m∑
k=0

γkTk(t), (3.4)

where each Tk is the k-degree Chebyshev polynomial of the first kind, formally defined

as Tk(t) = cos(k cos−1(t)). Since Chebyshev polynomials are based on the interval

[−1, 1] we will assume first that A has eigenvalues between −1 and 1. Let a, b such

that −1 ≤ a < b ≤ 1. The expansion coefficients γk for the polynomial to approximate

a step function h(t), which takes value 1 in [a, b] and 0 elsewhere, are known:

γk =


1
π (cos−1(a)− cos−1(b)) : k = 0,

2
π

(
sin(k cos−1(a))−sin(k cos−1(b))

k

)
: k > 0

.

Once the γk’s are known, the desired Chebyshev expansion of the projector P will be

given by: P ≈ ψm(A) =
∑m

k=0 γkTk(A).
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Figure 3.2: Different ways of damping Gibbs oscillations for Chebyshev approximation.

Damping and other practicalities

Expanding discontinuous functions using Chebyshev polynomials results in oscillations

known as Gibbs Oscillations near the boundaries. To reduce or suppress these oscilla-

tions, damping multipliers are often added. That is, each γk in the expansion above is

multiplied by a smoothing factor gmk which will tend to be quite small for the larger

values of k that correspond to the highly oscillatory terms in the expansion. Jackson

smoothing is a popular damping approach used in the whereby the coefficients gmk are

given by the formula

gmk =
sin(k + 1)αm

(m+ 2) sin(αm)
+

(
1− k + 1

m+ 2

)
cos(kαm),

where αm = π
m+2 . More details on this expression can be seen in [58]. Not as well

known is another form of smoothing proposed by Lanczos [82, Chap. 4] and referred to

as σ-smoothing. It uses the following simpler damping coefficients, called σ factors by

the author:

σm0 = 1; σmk =
sin(kθm)

kθm
, k = 1, . . . ,m with θm =

π

m+ 1
.

The damping factors are small for larger values of k and this has the effect of

reducing the oscillations. The Jackson polynomials have a much stronger damping

effect on these last terms than the Lanczos σ factors. For example the very last factors,
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and their approximate values for large m’s, are in each case:

gmm =
2 sin2(αm)

m+ 2
≈ 2π2

(m+ 2)3
; σmm =

sin(θm)

mθm
≈ 1

m
.

Jackson coefficients tend to over-damp the oscillations at the expense of sharpness of

the approximation. The Lanczos smoothing can be viewed as an intermediate form of

damping between no damping and Jackson damping. A comparison of the three forms of

damping is shown in Figure 3.2. To the three forms of damping (no-damping, Jackson,

σ-damping), we have added a fourth one which consists of compounding the degree

3 McWeeny filter with the Chebyshev polynomials. In the numerical experiments, we

have used Lanczos σ damping.

An important practical consideration is that we can economically compute vectors

of the form Tk(B)v, where B is as defined as

B =
A− cI
d

with c =
λ1 + λn

2
, d =

λ1 − λn
2

. (3.5)

since the Chebyshev polynomials obey a three term recurrence. That is, we have

Tk+1(t) = 2tTk(t) − Tk−1(t) with T0(t) = 1, T1(t) = t. As a result, the following it-

eration can be used to compute wk = Tk(B)v, for k = 0, · · · , · · · ,m

wk+1 = 2Bwk − wk−1, k = 1, 2, . . . ,m− 1, (3.6)

with w0 = v; w1 = Bv.

Remark 2 Note that if the matrix B is of the form B = Y >Y , where Y is a linear

transformation of the data matrix X using the mapping (3.5), then we need not compute

the matrix B explicitly since the only operations that are required with the matrix B are

matrix-vector products.

3.4 Threshold selection

The method we described so far requires a threshold parameter ε that separates the

small eigenvalues, those assumed to be perturbations of the zero eigenvalue, from the
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Figure 3.3: Exact DOS plots for three different types of matrices.

relevant larger eigenvalues that contribute to the rank. We now describe a method to

select ε based on the spectral density, which was introduced in the previous chapter.

3.4.1 DOS plot analysis

For motivation, let us first consider a matrix that is exactly of low rank and observe the

typical shape of its DOS function plot. As an example we take an n × n PSD matrix

with rank k < n, that has k eigenvalues uniformly distributed between 0.2 and 2.5, and

whose remaining n−k eigenvalues are equal to zero. An approximate DOS function plot

of this low rank matrix is shown in figure 3.3(A). The DOS is generated using KPM,

with a degree m = 30 where the coefficients µk are estimated using the exact trace of the

Chebyshev polynomial functions of the matrix. Jackson damping is used to eliminate

oscillations in the plot. The plot begins with a high value at zero indicating the presence

of a zero eigenvalue with high multiplicity. Following this, it quickly drops to almost a

zero value, indicating a region where there are no eigenvalues. This corresponds to the

region just above zero and below 0.2. The DOS increases at 0.2 indicating the presence

of new eigenvalues. Because of the uniformly distributed eigenvalues between 0.2 and

2.5, the DOS plot has a constant positive value in this interval.

To estimate the rank k of this matrix, we can count the number of eigenvalues in

the interval [ε, λ1] ≡ [0.2, 2.5] by integrating the DOS function over the interval. The

value λ1 = 2.5 can be replaced by an estimate of the largest eigenvalue. The initial

value ε = 0.2 can be estimated as the point immediately following the initial sharp

drop observed or the mid point of the valley. For low rank matrices such as the one

considered here, we should expect to see this sharp drop followed by a valley. The
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cutoff point between zero eigenvalues and relevant ones should be at the location where

the curve ceases to decrease, i.e., the point where the derivative of the spectral density

function becomes zero (local minimum) for the first time. Thus, the threshold ε can be

selected as

ε = min{t : φ′(t) = 0, λn ≤ t ≤ λ1}. (3.7)

For more general numerically rank deficient matrices, the same idea based on the

DOS plot can be employed to determine the approximate rank. Defining a cut-off

value between the relevant singular values and insignificant ones in this way works

when there is a gap in the matrix spectrum. This corresponds to matrices that have a

cluster of eigenvalues close to zero, which are zero eigenvalues perturbed by noise/errors,

followed by an interval with few or no eigenvalues, a gap, and then clusters of relevant

eigenvalues, which contribute to the approximate rank. Two types of DOS plots are

often encountered depending on the number of relevant eigenvalues and whether they

are in clusters or spread out wide.

Figures 3.3(B) and (C) show two sample DOS plots which belong to these two

categories, respectively. Both plots were estimated using KPM and the exact trace of

the matrices, as in the previous low rank matrix case. The middle plot (figure 3.3(B))

is a typical DOS curve for a matrix which has a large number of eigenvalues related to

noise which are close to zero and a number of larger relevant eigenvalues which are in

a few clusters. The spectral density curve displays a fast decrease after a high value

near zero eigenvalues due to the gap in the spectrum and the curve increases again due

the appearance of large eigenvalue clusters. In this case, we can use equation (3.7) to

estimate the threshold ε.

In the last DOS plot on figure 3.3(C), the matrix has again a large number of eigen-

values related to noise which are close to zero, but the number of relevant eigenvalues

is smaller and these eigenvalues are spread farther and farther apart from each other

as their values increase, (as for example when λi = K(n − i)2.) The DOS curve has

a similar high value near zero eigenvalues and displays a sharp drop, but it does not

increase again and tends to hover near zero. In this case, there is no valley or local

minimum, so the derivative of the DOS function may not reach the value zero. The

best we can do here is detect a point at which the derivative exceeds a certain negative
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Algorithm 2 Numerical rank estimation by polynomial filtering

Input: An n×n symmetric PSD matrix A, λ1 and λn of A, and number nv of sample
vectors to be used.
Output: The numerical rank rε of A.
1. Generate the random starting vectors vl : l = 1, . . .nv, such that ‖vl‖2 = 1.
2. Transform the matrix A to B = A/λ1, choose degree m for DOS and form the
matvecs

Bkvl : l = 1, . . . ,nv, k = 0, . . . ,m.

3. Form the scalars v>l Tk(B)vl using the above matvecs and obtain the DOS φ̃(t).
4. Estimate the threshold ε from φ̃(t) using eq. (3.8).
5. McWeeny filter: Estimate m1 and τ1 from ε. Compute Θ[m0,m1]vl using the
above matvecs (compute additional matvecs if required). Estimate the numerical
rank rε.
Chebyshev filter: Compute the degree m and estimate the coefficients γk for the
interval [ε, λ1]. Compute the numerical rank rε using the above matvecs.

value, for the first time, indicating a significant slow-down of the initial fast decrease.

In summary, the threshold ε for all three cases can be selected as

ε = min{t : φ′(t) ≥ tol, λn ≤ t ≤ λ1}. (3.8)

Our sample codes use tol = −0.01 which seems to work well in practice.

When the input matrix does not have a large gap between the relevant and noisy

eigenvalues (when numerical rank is not well-defined), the corresponding DOS plot of

that matrix will display similar behavior as the plot in figure 3.3(C), except the plot

does not go to zero. That is, the DOS curve will have a similar knee as in figure 3.3(C).

3.4.2 Algorithm

Algorithm 2 describes our approach for estimating the approximate rank rε by the two

polynomial filtering methods discussed earlier.

Computational cost. The core of the computation in the two rank estimation

methods is the matrix vector product of the form Tk(A)vl or in general Akvl for

l = 1, . . . ,nv, k = 0, . . . ,m (step 3). Note that no matrix-matrix products or fac-

torizations are required. In addition, the matrix vector products Akvl computed during
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the estimation of the threshold, for the spectral density, can be saved and reused for the

rank estimation, and so the related matrix-by-vector products are computed only once.

All remaining steps of the algorithm are essentially based on these ‘matvec’ operations.

For an n× n dense symmetric PSD matrix, the computational cost of Algorithm 2

is O(n2mnv). For a sparse matrix, the computation cost will be O(nnz(A)mnv), where

nnz(A) is the number of nonzero entries of A. This cost is linear in the number of

nonzero entries of A for large matrices and it will be generally quite low when A is very

sparse, e.g., when nnz(A) = O(n). These methods are very inexpensive compared to

methods that require matrix factorizations such as QR or SVD.

Remark 3 In some of the rank estimation applications, it is perhaps required to

estimate the corresponding eigenpairs or the singular triplets of the matrix, after the

approximate rank estimation. These can be easily computed using a Rayleigh-Ritz pro-

jection type methods, exploiting again the vectors Akvl generated for estimating the rank.

On the convergence. The convergence analysis of the trace estimator was discussed

in the previous chapter. The best known convergence rate for (2.4) is O(1/
√

nv) for

Hutchinson and Gaussian distributions, see Theorem 3.

Theoretical analysis for approximating a step function as in (2.2) is not straight-

forward since we are approximating a discontinuous function. Convergence analysis on

approximating a step function is documented in [83]. A convergence rate of O(1/m) can

be achieved with any polynomial approximation [83]. However, this rate is obtained for

point by point analysis (at the vicinity of discontinuity points), and uniform convergence

cannot be achieved due to the Gibbs phenomenon.

Improved theoretical results can be obtained if we first replace the step function by

a piecewise linear approximation, and then employ polynomial approximation. Article

[81] shows that uniform convergence can be achieved using Hermite polynomial approx-

imation (as in sec. 3.3.1) when the filter is constructed as a spline (piecewise linear)

function. For example,

ψ(t) =


0 : for t ∈ [0, ε0)

Θ[m0.m1] : for t ∈ [ε0, ε1)

1 : for t ∈ [ε1, 1]

. (3.9)
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Figure 3.4: Numerical ranks estimated for the example ukerbe1.

It is well known that uniform convergence can be achieved with Chebyshev polyno-

mial approximation if the function approximated is continuous and differentiable [57].

Further improvement in the convergence rate can be accomplished, if the step func-

tion is replaced by an analytic function, for example, ψ(t) can be a shifted version

of tanh(αt) function. In this case, exponential convergence rate can be achieved with

Chebyshev polynomial approximation [57]. However, such complicated implementations

are unnecessary in practice. The bounds achieved for both the trace estimator and the

approximation of step functions discussed above are too pessimistic, since in practice

we can get accurate ranks for m ∼ 50 and nv ∼ 30.

3.5 Numerical experiments

We first illustrate the performance of the rank estimation techniques on a 5, 981×5, 981

matrix named ukerbe1 from the AG-Monien group (the matrix is a Laplacian of an

undirected graph), available in the SuiteSparse Matrix Collection [66] database. The

performances of the Chebyshev Polynomial filter method and the extended McWeeny

filter method for estimating the numerical rank of this matrix are shown in figure 3.4.

Figure 3.4 (Left) gives the spectral density plot obtained using Chebyshev polyno-

mials of degree m = 50 and a number of samples nv = 30. Using this plot, the threshold

ε estimated by the method described in subsection 3.4 was ε = 0.169. Figure 3.4 (Mid-

dle) plots the numerical ranks estimated by the McWeeny filter method with 30 sample

vectors. The degrees [m0,m1] for the Hermite polynomials estimated were [2, 54]. In the

plot, the circles indicate the approximate ranks estimated with the `th sample vectors

and the dark line is the cumulative (running) average of these estimated approximate

rank values. The average numerical rank estimated over 30 sample vectors was equal
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Figure 3.5: Rank estimation for the ORL dataset. Right: Eigenfaces.

to 4030.47. The exact number of eigenvalues above the threshold is 4030, indicated

by the dotted line in the plot. Similarly, figure 3.4 (Right) plots the numerical ranks

estimated by the Chebyshev filter method with nv = 30. The degree for the Chebyshev

polynomials was m = 50. The average numerical rank estimated over 30 sample vectors

is 4030.57.

Timing Experiment : Here, we provide an example to illustrate how fast these

methods can be. We consider a sparse matrix of size 1.25 × 105 called Internet from

SuiteSparse database, with nnz(A) = 1.5 × 106. The estimation of its rank by the

Chebyshev filter method took only 7.18 secs on average (over 10 trials) on a standard

3.3GHz Intel-i5 machine. Computing the rank of this matrix by an approximate SVD,

for example using the svds/eigs function matlab which relies on ARPACK, will be

exceedingly expensive. It took around 2 hours to compute 4000 singular values of the

matrix on the same machine. Methods based on rank-revealing QR factorizations or the

standard SVD are not even possible for this problem on a standard workstation such as

the one we used.

Eigenfaces: It is well known that face images lie in a low-dimensional linear sub-

space and the low rank approximation methods are widely used in applications such

as face recognition. Eigenfaces is a popular method used for face recognition which is

based on Principal Component Analysis (PCA). Such PCA based techniques require

the knowledge of the dimension of the smaller subspace. Here, we demonstrate how our

rank estimation methods can be combined with the randomized-SVD method [67] in
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Figure 3.6: Estimation of the number of signals for the adaptive beamforming example.

the application of face recognition. As an illustration, we consider the ORL face dataset

obtained from the AT&T Labs Cambridge database of faces. There are ten different

images of each of 40 distinct subjects. The size of each image is 92 × 112 pixels, with

256 gray levels per pixel. So, the input matrix is of size 400×10304, which is formed by

vectorizing the images. The matrix is mean centered (required for eigenfaces method)

and scaled.

In figure 3.6 (left and middle plots) the DOS and the numerical rank are plotted

for the ORL image matrix, both estimated using Chebyshev polynomials of degree

m = 50 and nv = 30. The numerical rank estimated over 30 sample vectors was

found to be 18.90. There are 19 eigenvalues above the threshold, estimated using (3.8)

with tol = −0.01. The four images (on the right) in the figure are the eigenfaces of 4

individuals recovered using rank k = 20 (top 20 singular vectors) computed using the

randomized SVD algorithm [67].

Estimation of the number of signals: The next application we will consider here

comes from Signal Processing. The objective is to detect the number of signals q embed-

ded in the noisy signals received by a collection of n sensors (equivalent to estimating

the number of transmitting antennas). This can be achieved by finding the numerical

rank of the corresponding sample covariance matrix of the received signals.

We consider n = 1000 element sensor array receiving r = 8 interference signals

incident at angles [−900, 900,−450, 450, 600,−300, 300, 00]. The output signal y(t) can

be represented as

y(t) =

q∑
i=1

si(t)ai + η(t) = As(t) + η(t), (3.10)
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whereA = [a1(θ1), a2(θ2), . . . , aq(θq)] is an n×q mixing matrix, s(t) = [s1(t), s2(t), . . . , sq(t)]

an q× 1 signal vector (signals sent from the transmitters) and η(t) is a white noise vec-

tor, with the noise power set to −10DB. The covariance matrix C = E[y(t)y(t)>] is a

numerically rank deficient matrix. That is, the matrix is a noisy version of a low rank q

matrix. Hence, we can employ the rank estimation methods to estimate the numerical

rank of this matrix, in turn estimating the number of signals q in the received signals.

Figure 3.6 (left) shows the spectral density obtained using Chebyshev polynomial

of degree m = 50 and number of samples nvec = 30. The threshold ε was estimated

by the method described in the main paper using this spectral density plot. Figure 3.6

(middle) shows the estimated numerical rank by the extended Mc-Weeny filter method

with 30 samples. The degree of Hermite polynomial estimated was [m0,m1] = [2, 44].

The average of approximate ranks estimated over 30 sample vectors was equal to 8.07.

The actual count in the interval is 8 (we know there are 8 signals).

Similarly, figure 3.6 (right) shows the estimated numerical rank by the Chebyshev

filtering method using degree m = 50 and nvec = 30. The average of approximate

ranks estimated over 30 sample vectors was equal to 8.25. Clearly, both the methods

have accurately estimated the number of interference signals embedded in the received

signals.

This problem of number of signals estimation is further discussed in the next chapter,

where a new method is proposed for this estimation.



Chapter 4

Dimension estimation for Krylov

approximation

4.1 Introduction

In many applications, for a given set of data observations, it is required to estimate

the dimension of the principal (dominant) subspace of the covariance matrix associ-

ated with the observations [84, 74, 85, 2]. These observations can typically be modeled

as high dimensional random quantities embedded in noise. In statistical signal and

array processing, detection of the number of signals in the observations of array of pas-

sive sensors is a fundamental problem [84, 85], which can be posed as this dimension

estimation problem. Similar estimation problems occur in many other fields such as

chemo-metrics [86], econometrics and statistics [74], population genetics [87], and re-

duced rank regression models [77]. In modern data related applications, the observed

data is typically high dimensional, but their relevant information lies in a low dimen-

sional subspace. Low rank approximation is a popular tool used in such applications to

reduce the data [23, 67, 7]. Determining the lower dimension (rank k) remains a princi-

pal problem in these applications too, as discussed in the previous chapter. Moreover, in

many of these applications, once the dimension of the principal subspace (approximate

rank) is estimated, it is also desired to obtain an approximation for this principal sub-

space, e.g., in principal component analysis (PCA) [23], subspace tracking and others.

Krylov subspace based methods [88] are the most popular and effective methods used

56
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to compute approximations for the principal subspace, see [89, 90] for examples. Hence,

we view this problem as dimension estimation for Krylov subspace approximation of

covariance matrices.

The problem of estimating the rank or the dimension of the principal subspace has

been studied in various fields, and a number of different methods have been proposed in

the literature, as we saw in the previous chapter. However, most of these methods require

computing the complete eigen-decomposition of the sample covariance matrix, which

becomes impractical for large dimensional matrices, e.g., in modern data applications

and large aperture arrays in array signal processing. Even forming the covariance matrix

is inviable in many cases. A set of inexpensive methods were proposed for numerical rank

estimation of data matrices in the previous chapter (in [2, 3]). However, methods that

simultaneously estimate the dimension and obtain an approximation to the principal

subspace are lacking.

In this chapter, we present a novel method for estimation of the dimension of the

principal subspace of covariance matrices. The method can be combined with Krylov

subspace methods to compute an approximation to the principal subspace, simultane-

ously. The method operates on a model selection framework, and the proposed selection

criterion requires computing only the top k eigenvalues of the sample covariance matrix

Sn = 1
nXX

T , where X is the matrix containing n observed data of dimension p, for a

given integer k. In order to compute these eigenvalues, we can use the popular Lanczos

algorithm [88] which requires only matrix-vector products with Sn. Hence, we do not

even need to form the sample covariance matrix Sn = 1
nXX

T , explicitly. Our approach

can be viewed as a stopping criterion for the Krylov subspace method, to simultaneously

estimate the dimension and compute the subspace. We only compute the eigenpairs up

to the optimal k = q, the exact dimension of the principal subspace.

The proposed selection criterion is derived using random matrix perturbation the-

ory results [91]. The criterion also includes a penalty (function) term which under

certain assumptions yields us a strongly consistent estimator, i.e., the method estimates

the exact dimension as the number of data observations n → ∞. We establish this

strong consistency for the proposed method and also present performance analysis. We

derive conditions on the signal strength and the noise level for avoiding incorrect di-

mension estimation in the finite n case, using recently developed random matrix theory
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results [92]. We also show that the consistency results and the performance analysis

hold for the eigenvalues computed by the Krylov subspace methods using the recent

results in [93].

4.2 Problem Formulation

The data observations which form the matrix X are typically modeled as high di-

mensional random quantities embedded in noise. We assume the standard Gaussian

random model for the set of n data observations each of dimension p. We denote the

p-dimensional data as {xi}ni=1 described as

xi = Msi + σni, i = 1, . . . , n (4.1)

where M is a p × q mixing matrix with q independent columns, si are q × 1 vectors

containing the zero mean relevant data and ni are p-dimensional Gaussian (white) noise

vectors with parameter σ2 as the unknown noise variance.

Typically, the covariance matrix Σ of the underlining (relevant) data is assumed to

be a low rank matrix of rank q. That is,

Σ = BBT ,

where B ∈ Rp×q, q � p and span(B) is the principal subspace. The top q eigenvalues

λi for i = 1, . . . , q of the matrix correspond to the q dimensional relevant data s and the

remaining p − q eigenvalues are zeros. Hence, the subspace associated with the top q

eigenvectors (eigenvalues) forms the principal subspace, which is of interest. However,

due to noisy observations, the exact covariance matrix of the underlining data will

usually be unavailable (else finding q would be simple), but we can form the sample

covariance matrix Sn = 1
n

∑n
i=1 xix

T
i using the n (noisy) observations of the data. Our

goal is to estimate q, the dimension of (relevant) data in the observation, i.e., the

dimension of the principal subspace. Most methods for dimension estimation are based

on the eigenvalues of the sample covariance matrix Sn denoted by `1 ≥ `2 ≥ . . . ≥ `p.
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4.3 Proposed Method

In this section, we first present the proposed method for the principal subspace dimen-

sion estimation. We then discuss the Krylov subspace methods for computing partial

eigen-decomposition of matrices, and present the proposed algorithm for simultaneous

estimation of the dimension of the principal subspace and its approximation.

The novel method is based on model selection technique and the proposed criterion

is the following:

arg min
k

[
n

p∑
i=k+1

`i − Cn
(p− k)(p− k + 1)

2

]
(4.2)

where `i, for i = 1, . . . , p are the eigenvalues of the sample covariance matrix Sn =
1
nXX

T , and Cn is a parameter that depends on n. Note that the first term in the

criterion depends on the sum of bottom p − k eigenvalues of Sn, which can be written

as
p∑

i=k+1

`i =
1

n
‖X‖2F −

k∑
i=1

`i.

Thus, the method requires computing only the top k eigenvalues of Sn. Also, if Krylov

subspace method such as the Lanczos algorithm [88] is used for computing these eigen-

values, then we do not need to compute Sn = 1
nXX

T explicitly. Note that, the Krylov

subspace methods also yield an approximation to the eigenvectors corresponding to the

computed eigenvalues. Therefore, we can use the above method as a stopping criterion

for the Krylov subspace methods, and hence, estimating the dimension and approximat-

ing the principal subspace of the covariance matrix, simultaneously. The above criterion

is derived in [4] using concepts from random matrix perturbation theory.

Krylov subspace methods

The proposed dimension estimation criterion requires computing only the top k eigenval-

ues of the sample covariance matrix Sn for a given k, since
∑p

i=k+1 `i = 1
n‖X‖

2
F−
∑k

i=1 `i.

Krylov subspace methods are a popular set of methods used to compute the top k eigen-

values and eigenvectors of matrices [88, 93]. So, the proposed method can be used as a

stopping criterion for Krylov subspace approximation of the covariance matrix.

For a symmetric matrixA, them dimensional Krylov subspace is defined asKm(A, v) =
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span{v,Av, . . . , Am−1v}, where v is a random vector of unit norm, ‖v‖ = 1, v *
null(A) and m is a scalar. The Lanczos algorithm builds an orthonormal basis for

this Krylov subspace [88]. We can also define a block Krylov subspace as: Km(A, V ) =

span{V,AV , . . . , Am−1V }, where V ∈ Rp×k is a random matrix such that V * null(A),

see [93] for recent theoretical results for randomized block Krylov subspace methods.

Approximate eigenvalues and eigenvectors of A, say {θi, yi}ki=1 for some k, can be com-

puted using the Krylov subspace methods. We have the following result from eqn. 3

and Theorem 1 in [93]:

Lemma 2 Consider a symmetric PSD matrix A ∈ Rp×p with eigenvalues `i, i = 1, . . . , p.

Let {θi, yi}ki=1 be the k eigenpair computed using m steps of block Krylov subspace method

(using the orthonormal basis of Km(A, V ) for V ∈ Rp×k). If m = log(p)√
ε

for some

0 < ε < 1, then we have

|θi − `i| ≤ ε`k+1, i = 1, . . . , k.

Moreover, suppose Yk is a matrix containing the eigenvectors {yi}ki=1 computed by the

Krylov subspace method as columns, then we have for ξ ∈ {2, F}

‖A− YkY T
k A‖ξ ≤ (1 + ε)‖A−Ak‖ξ,

where Ak is the best rank k approximation of A obtained using its exact eigen-decomposition.

Therefore, when the Krylov subspace method is used to compute the top k eigenvalues

of Sn, the eigenvalues θi’s computed are multiplicative approximations of the eigenvalues

`is of the sample covariance matrix. That is, we have

`i − ε`k+1 ≤ θi ≤ `i, i = 1, . . . , k.

The error ε in the above analysis is related to the gap in the spectrum, i.e., we can replace

ε by `k
`k+1
− 1 to be the error, see [93, §7]. For k > q, the error term ε`k+1 is related

to the noise related eigenvalues and we have ε`k+1 = O( 1√
n

) from the analysis in [94].

Asymptotically, this term goes to zero. Thus, θi’s have the same statistical properties

of `i’s, and are good approximation to them. Since `i’s are asymptotically equivalent to

λi’s, θi’s are good estimates of λi’s. From the above Lemma, we also note that the Krylov
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Algorithm 3 Proposed Algorithm

Input: Data matrix X ∈ Rp×n, the parameter Cn, and a error tolerance ε.
Output: Dimension q and an approximation to the principal subspace Yq.
Set IC = zeros(p, 1), Q = [ ], k = 1,m = log(p)/

√
ε.

for k = 1 to p do
1. Generate a random vector vk with ‖vk‖2 = 1.
2. K = 1

n [Xvk, (XX
T )Xvk, . . . , (XX

T )m−1Xvk].
3. Q = orth([Q,K]), Q = Q(:, 1 : k).
4. T = 1

nQ
TXXTQ.

5. [V,Θ] = eig(T ).

6. IC(k) = n(‖X‖2F −
∑k

i=1 θi)− Cn
(p−k)(p−k+1)

2 .
if (k > 1 && IC(k) > IC(k − 1)) then

break;
end if

end for
q = k − 1. Output q and Y = QV .

subspace method yields a good approximation to the corresponding eigenvectors of the

matrix, hence yielding a good approximation to the principal subspace of the covariance

matrix.

Proposed Algorithm: Algorithm 3 presents the proposed algorithm for simultane-

ously estimating the dimension of the principal subspace of the covariance matrix and

approximating it. In step 2, note that only matrix-vector products with the data X

and its transpose are needed to form the Krylov matrix K. In step 3, since Q is al-

ready orthonormal from the previous iteration, the new vectors in K can be quickly

orthonormalized with respect to Q using say Gramm-Schmidt algorithm [56]. We can

also replace steps 2-5, by a version of the Lanczos algorithm [88], where the previous

subspace Q and the tridiagonal matrix T are updated via. the Lanczos algorithm.

4.4 Analysis

In this section, we first show that the proposed method yields a strong consistent esti-

mator for q, the exact dimension. We then analyze when the method will underestimate

and overestimate the dimension q, and provide the conditions for incorrect estimation.
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4.4.1 Strong consistency

Theorem 4 The criterion defined by

IC(k) = n

p∑
i=k+1

`i − Cn
(p− k)(p− k + 1)

2
(4.3)

can be used to obtain a strong consistent estimator for q, the exact dimension of the

principal subspace. That is, limn→∞ k̂ = q, where k̂ = arg mink IC(k), with value of Cn

such that

lim
n→∞

Cn
n

= 0 and lim
n→∞

Cn√
n log logn

=∞.

Proof of the above theorem can be found in [4]. For the right choice of Cn, the proposed

estimator is strongly consistent. Next, let us substitute the eigenvalues computed using

the Krylov subspace method in our criterion. Then we have the following result:

Corollary 4 For the choice of Cn in Theorem 6, the criterion 4.2 is strongly consistent

for the eigenvalues computed using the Krylov subspace method in Algorithm 3.

Next, we analyze the performance of the proposed method for finite sample size and

obtain the conditions for wrong detection using the recent random matrix theory results.

4.4.2 Performance Analysis

The consistency analysis above considered the asymptotic case when n goes to infinity

and the law of iterated logarithm is used to derive the results. Here, we analyze the

performance of the proposed method for finite sample size (general n), and obtain the

conditions when the method either underestimates or overestimates the dimension.

The notorious scenario for wrong detection is when the dimension is off by exactly

one (q ± 1), which we analyze here. The analysis trivially generalizes to other cases.

First, let us consider underestimation by one, and consider the following difference:

∆1 = IC(q − 1)− IC(q)

= n`q − Cn(p− q + 1).
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Note that we will not have underestimation when ∆1 > 0, i.e., when

`q >
Cn
n

(p− q + 1).

Thus, for the finite sample size case, we need the signal strength (hence the magnitude

of `q) to be large enough in order not to underestimate the dimension. That is, we

need a big gap between relevant eigenvalues and the noise related eigenvalues. For the

asymptotic case (n → ∞), we know that the RHS goes to zero by the property of Cn

and, hence we will not have any underestimation of the dimension since the eigenvalues

are always positive.

Next, let us consider overestimation of the dimension by one, and the following

difference:

∆2 = IC(q + 1)− IC(q)

= Cn(p− q)− n`q+1.

Again, we will not overestimate if ∆2 > 0, i.e., when

`q+1 <
Cn
n

(p− q).

We know that `q+1 corresponds to the largest noise related eigenvalue of the covariance

matrix. The above equation indicates that the noise level must be low for the method

to avoid overestimation in the finite sample size case. For finite n, when the ratio of

p/n or n/p is not too large, our method will perform well for reasonable noise levels. In

the asymptotic case, we again saw that the method is consistent.

We know that the noise level in the data is σ2. Using the recent random matrix

theory results [92], we can obtain a bound on this noise level for avoiding overestimation

for finite but large values of p, n. We know that the largest eigenvalue of the sample

covariance matrix (Wishart matrix) of pure noise vectors with Gaussian distribution

follows the Tracy-Widom distribution [92]. Then, for finite p, n as long as min{p, n} � 1

and the ratio of p/n or n/p is not too large, the largest eigenvalue due to noise will be

approximately σ2(1 +
√
p/n)2, see [85] for details. Hence for finite but large values of
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p, n, we have

`q+1 ≈ σ2

(
1 +

√
p

n

)2

.

Substituting in the condition above for overestimation, we get the following bound for

the noise level for exact detection for finite but large values of p, n:

σ2 <
Cn(p− q)

(
√
n+
√
p)2

.

The above analysis provides us the conditions on the relevant eigenvalue `q (gap) and

noise level σ2 in order to avoid incorrect estimation of the dimension q using the proposed

method. Therefore, if the noise level σ2 is known or if it can be estimated, then the

parameter Cn can be chosen such that the above condition is always true.

4.5 Numerical experiments

In this section, we present some numerical experimental results to illustrate the per-

formance of the proposed method, and compare it to other popular methods. First,

we consider examples for the number of signals detection application in signal and ar-

ray processing. We then consider few large data matrices to illustrate the method’s

performance.

4.5.1 Number of signals detection

We saw the problem of estimating the number of signals in the previous chapter. Here,

we first look at the standard signal embedded in noise model. We consider p dimensional

signals xi’s that are corrupted by white noise with N (0, σ2I), variance σ2. There are

three parameters in this model, namely the number of samples n, the signal strength or

the magnitude of λq eigenvalue, and the noise level σ2. We compare the performances

of the proposed method and the MDL method proposed in [84], as a function of these

three parameters. In all experiments, we consider Cn = 2σ2 when n < p, Cn = σ2 log n

in most other cases, except when when n � p (say > 5p), we choose Cn = σ2√n to

ensure the asymptotic property of Cn holds.

Figure 4.1 presents the three results which illustrate the performances of the two
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Figure 4.1: Signal detection: Comparison between proposed method MPT and MDL.

methods, the proposed matrix perturbation theory (MPT) based method and the MDL

method. For a chosen signal dimension p (reported in the plot), we generate the signals

and the sample covariance matrix based on the considered signal eigenvalues λ (listed

in the plot). We then add noise covariance matrix corresponding to the noise level σ2

considered. We plot the probability of the estimated rank qest being not equal to the

actual rank q, i.e., Pr(qest 6= q) over 100 trials. In the first plot of Fig. 4.1, we plot

Pr(qest 6= q) as a function of the number of samples n. The signal dimension is p = 200,

the actual rank q = 5 and the noise level σ2 = 1. The eigenvalues corresponding to the

signals are given in the plot. We note that MDL requires n ≥ p to yield exact rank,

where as the proposed method MPT yields exact rank for much smaller sample size.

In the second (middle) plot, we compare the performances with respect to the signal

strength, i.e., the magnitude of the qth eigenvalue λq of the covariance matrix. Again

the signal dimension is p = 200, the actual rank q = 5 and the noise level σ2 = 1. The

number of samples is n = 400. We note that, the proposed method again outperforms

MDL and yields more accurate results for much smaller signal strength. In the last plot,

we compare the performances with respect to the noise level σ2. Here too, the signal

dimension is p = 200, the actual rank q = 5 and the number of samples is n = 400. The

signal eigenvalues are given in the plot and the signal strength λq = 6. The proposed

method MPT performs better than MDL wrt. the noise level too. This is because, in

our method, an appropriate parameter Cn can be chosen based on the noise level σ2, as

seen in the performance analysis, when σ2 is known (hence the choice Cn = σ2 log n).

Non-Gaussian signal model: Next, we consider the signals to be non-Gaussian, and

simulate a uniform linear array of p sensors with q incoherent sinusoidal plane waves
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Figure 4.2: Signal detection: Comparison between MPT, MDL and RMT methods and
Krylov method.

impinging from directions [φ1, . . . , φq]. Here, the received signals is modeled as,

y(t) =

q∑
k=1

H(φk)e
−jη(t) + n(t),

where H(φk)
T = [1, e−jτk , . . . , e−j(q−1)τk ] are steering (direction) vectors with τk =

π sinφk, and η(.) = random phase uniformly distributed on (0, 2π). The noise added

n(.) = white noise with Gaussian distribution N (0, σ2I), with variance σ2. In this case,

the signals are not Gaussian distributed. We compare the performances of the proposed

method MPT and MDL [84], along with a threshold based method proposed in [95]

based on random matrix theory (RMT) for signal detection in this model.

The first two plots in Figure 4.2 present the results comparing the performances

of the three methods. We again plot the probability of the estimated rank qest being

not equal to the actual rank q, i.e., Pr(qest 6= q) over 100 trials. In both plots, the

signal dimension is p = 200, the rank is q = 6, and the angles of incidence are Φ =

[30o, 37o, 44o, 51o, 58o, 65o]. In the first plot, we compare the performances as a function

of the sample size n, with the noise level σ2 = 0.2. In the second plot, we compare the

performances as a function of the noise level σ2, with n = 400 (The magnitude of the

smallest signal eigenvalue was between 2 to 2.5). We observe that the performance of

our method is superior to MDL even in the non-Gaussian signal case, and is similar to

the state of the art threshold selection method RMT. However, RMT has parameters,

such as confidence level α to be selected and the noise level σ2 used tends to yield

wrong results in some cases. Moreover, both MDL and RMT require computing of all
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Table 4.1: Performance of the Krylov Subspace method, Algorithm 3 with m = 10.

Dataset n Actual q λq σ2 Estimated q̃ ‖A− Yq̃Y T
q̃ A‖F Runtime

sprand 500 50 5 1 50 1.1e4 0.72 secs
500 100 2 0.5 100 1.5e4 1.42 secs
1000 100 2 0.5 100 2.9e4 5.11secs
1000 100 1 0.3 100 2.8e4 5.35secs
4000 100 2 0.3 100 5.0e4 20.56secs

Harvard 500 169 0.73 0.25 165 34.2 0.44secs
CSPhD 1882 705 0.8 0.25 705 32.1 1.8secs
lpiceria3d 3576 122 5 0.25 145 120.5 0.61secs
EVA 8497 349 2 0.25 349 55.2 4.92secs
lpstocfor3 16675 981 562 0.25 981 3.0e4 548secs

the eigenvalues of the sample covariance matrix.

Krylov subspace method: In the previous two set of experiments, we used the ex-

act eigenvalues of the covariance matrices (computed using eig function in Matlab) for

the dimension estimation by the three compared methods (MDL and RMT require all

eigenvalues). Next, we illustrate how the proposed Krylov subspace based algorithm 3

performs for the dimension estimation. The last plot in figure 4.2 give the performance

of the algorithm as a function of the number of Lanczos steps m. We know the re-

lation between the error ε in the eigenvalue estimation by the Lanczos algorithm and

the number of Lanczos steps m from Lemma 2. Hence, increasing m is equivalent to

decreasing ε. We see that for a very few Lanczos steps m ≥ 4, we get accurate results.

This superior performance of the Lanczos algorithm was observed in [90] as well for a

similar Gaussian signal detection model. With Algorithm 3, for m ≥ 4, we observed

that the performance of the proposed method for different n, σ2, λq was similar to what

we have reported in Figure 4.1.

4.5.2 Data matrices

In the last set of experiments, we illustrate the performance of the proposed method

for numerical rank estimation of data matrices. We consider general data matrices that

have low numerical rank from publicly available database, SuiteSparse [66], and a few

synthetic sparse random matrices.
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Table 4.1 presents the performance of the Krylov Subspace method, i.e., Algorithm 9

for dimension estimation and approximation of the principal subspace. We consider few

synthetic sparse random matrices of the form X = AΛAT +N , where A is a sparse signal

matrix of size n×q (sparsity nnz(A)/nq = 0.2), Λ is a diagonal matrix with the smallest

diagonal entry equal to λq listed in the 4th column. N is a Gaussian sparse random

matrix with σ2 listed in fifth column. The number of Lanczos steps per iteration (for

each k) is m = 10. The exact dimension q and the estimated dimension q̃ are reported

(dimension estimation), along with the Frobenius norm error ‖A−Yq̃Y T
q̃ A‖F evaluating

the approximation to the principal subspace. The runtime of the algorithm is also

reported (computed using cputime function on an Intel i-5 3.4GHz machine). For the

synthetic examples, we vary the following parameters :size n, rank q, signal strength

λq and noise level σ2, and report the results. We note that the proposed algorithm

performs very well and is inexpensive. We also consider a few sparse data matrices.

We report only those matrices that have smaller numerical rank (q � min(n, p)) and

a reasonable gap in the spectrum. Lanczos algorithm works well only when there is a

spectral gap. Otherwise, the interior eigenvalues do not converge. We observe that the

algorithm performs reasonably well for the reported matrices.



Chapter 5

Matrix approximations via

coarsening

5.1 Introduction

Modern applications involving data often rely on very large datasets, but in most sit-

uations the relevant information lies in a low dimensional subspace. In many of these

applications, the data matrices are sparse and/or are representations of large graphs.

In recent years, there has been a surge of interest in approximating large matrices in a

variety of different ways, such as by low rank approximations [7, 67, 96], graph sparsi-

fication [32], and compression. Methods to obtain low rank approximations include the

partial singular value decomposition (SVD) [67] and Column Subset Selection (CSS)

[25]. Efficient methods have been developed to compute the partial SVD [88, 56], a

problem that has been studied for a few decades. However, traditional methods for

partial SVD computations cannot cope with very large data matrices. Such datasets

prohibit even the use of rather ubiquitous methods such as the Lanczos or subspace it-

eration algorithms [88], since these algorithms require consecutive accesses to the whole

matrix multiple times. Computing such matrix approximations is even harder in the

scenarios where the matrix under consideration receives frequent updates in the form

of new columns or rows.

Much recent attention has been devoted to a class of ‘randomization’ techniques [97,

96, 67] whereby an approximate partial SVD is obtained from a small randomly sampled

69
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subset of the matrix, or possibly a few subsets. Several randomized embedding and

sketching methods have also been proposed [67, 28]. These randomization techniques are

well-established (theoretically) and are proven to give good results in some situations.

However, randomized methods by themselves can be suboptimal in many situations

since they do not exploit available information or the redundancies in the matrix. For

example, many sampling methods only consider column norms, and embedding and

sketching methods are usually independent of the input matrix. One of the goals of

this chapter is to show that multilevel graph coarsening, a technique that is often used

in the differnt context of graph partitioning [98], can provide superior alternatives to

randomized sampling, at a moderate cost.

Coarsening a graph (or a hypergraph) G = (V,E) means finding a ‘coarse’ approx-

imation Ḡ = (V̄ , Ē) to G with |V̄ | < |V |, which is a reduced representation of the

original graph G, that retains as much of the structure of the original graph as possi-

ble. Multilevel coarsening refers to the technique of recursively coarsening the original

graph to obtain a succession of smaller graphs that approximate the original graph

G. These techniques can be more expensive than down-sampling with column norm

probabilities [96] but they are also more accurate. Moreover, coarsening methods will

be inexpensive compared to the popular leverage scores based sampling [27] which is

more accurate than column norm based sampling. For very large matrices, a typical

algorithm would first perform randomized sampling to reduce the size of the problem

and then utilize a multilevel coarsening technique for computing an approximate partial

SVD of the reduced matrix.

The second low rank approximation problem considered in this chapter is the column

subset selection problem [25] (CSSP) or CUR decomposition [26, 27]. Here, the goal

is to select a subset of columns that best represent the given matrix spectrally, i.e.,

with respect to spectral and Frobenius norms. Popular methods for the CSSP use

the leverage score sampling measure for sampling/selecting the columns. Computing

the leverage scores requires a partial SVD of the matrix and this may be expensive,

particularly for large matrices and when the (numerical) rank is not small. We will

see how graph coarsening techniques can be adapted for column subset selection. The

coarsening approach is an inexpensive alternative for this problem and it performs well

in many situations as the experiments will show.
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The third problem we consider is that of graph sparsification [29, 32]. Here, given a

large (possibly dense) graph G, we wish to obtain a sparsified graph G̃ that has signifi-

cantly fewer edges than G but still maintains important properties of the original graph.

Graph sparsification allows one to operate on large (dense) graphs G with a reduced

space and time complexity. In particular, we are interested in spectral sparsifiers, where

the Laplacian of G̃ spectrally approximates the Laplacian of G [31, 32, 28]. That is,

the spectral norm of the Laplacian of the sparsified graph is close to the spectral norm

of the Laplacian of G, within a certain additive or multiplicative factor. Such spectral

sparsifiers can help approximately solve linear systems with the Laplacian of G and to

approximate effective resistances, spectral clusterings, random walk properties, and a

variety of other computations. We will again show how graph coarsening can be adapted

for the task of graph sparsification.

5.2 Applications

We first present a few applications, where the (multilevel) coarsening methods discussed

in this chapter can be employed. The matrices encountered in these applications are

typically large, and sparse, often representing graphs.

i. Latent Semantic Indexing - Latent semantic indexing (LSI) is a well-established

text mining technique for processing queries in a collection of documents [99, 100]. Given

a user’s query, the method is used to retrieve a set of documents from a given collection

that are most relevant to the query. The truncated SVD [99] and related techniques [100]

are common tools used in LSI. The argument exploited is that a low rank approximation

preserves the important underlying structure associated with terms and documents, and

removes the noise or variability in word usage [96]. Multilevel coarsening for LSI was

considered in [101].

ii. Projective clustering - Several projective clustering methods such as Isomap,

Local Linear Embedding (LLE), spectral clustering, subspace clustering, Laplacian

eigenmaps and others involve a partial eigen-decomposition or a partial SVD of graph

Laplacians. Various kernel based learning methods also require the (partial) SVD of
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large graph Laplacians. In most applications today, the number of data-points is large

and computing singular vectors (eigenvectors) is expensive in most cases. Graph coars-

ening is an effective strategy to reduce the number of data-points in these applications,

see [102, 103] for a few illustrations.

iii. Eigengene analysis - Analyzing gene expression DNA microarray data has

become an important tool in the study of a variety of biological processes [104, 105].

In a microarray dataset, we have m genes (from m individuals possibly from different

populations) and a series of n arrays probe genome-wide expression levels in n different

samples, possibly under n different experimental conditions. The data is large with

several individuals and gene expressions, but is known to be of low rank. Hence, it has

been shown that a small number of eigengenes and eigenarrays (few singular vectors)

are sufficient to capture most of the gene expression information [104]. Article [105]

showed how column subset selection (CSSP) can be used for selecting a subset of gene

expressions that describe the population well in terms of spectral information captured

by the reduction. Later we will show how hypergraph coarsening can be adapted to

choose a good (small) subset of genes in this application.

iv. Multilabel Classification - The last application we consider is that of multilabel

classification in machine learning [106, 10]. In the multilabel classification problem, we

are given a set of labeled training data {(xi, yi)}ni=1, where each xi ∈ Rp is an input

feature for a data instance which belongs to one or more classes, and yi ∈ {0, 1}d are

vectors indicating the corresponding labels (classes) to which the data instances belong.

A vector yi has a one at the j-th coordinate if the instance belongs to j-th class. We

wish to learn a mapping (prediction rule) between the features and the labels, in order

to be able to predict a class label vector y of a new data point x. Such multilabel

classification problems occur in many domains such as computer vision, text mining,

and bioinformatics [107], and modern applications involve a large number of labels.

A common approach to handle classification problems with many classes is to be-

gin by reducing the effective number of labels by means of so-called embedding-based

approaches. The label dimension is reduced by projecting label vectors onto a low di-

mensional space, based on the assumption that the label matrix Y = [y1, . . . , yn] has
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a low-rank. The reduction is achieved in different ways, for example, by using SVD

in [107] and column subset selection in [108]. In this work, we demonstrate how hy-

pergraph coarsening can be employed to reduce the number of classes, and yet achieve

accurate learning and prediction.

5.3 Hypergraph Coarsening

Hypergraphs extend the classical notion of graphs. A hypergraph H = (V,E) consists

of a set of vertices V and a set of hyperedges E [109, 110]. In a standard graph an edge

connects two vertices, whereas a hyperedge may connect an arbitrary subset of vertices.

A hypergraph H = (V,E) can be canonically represented by a sparse matrix A, where

the vertices in V and hyperedges (nets) in E are represented by the columns and rows of

A, respectively. This is called the row-net model. Each hyperedge, a row of A, connects

the vertices, i.e., the columns, whose corresponding entries in that row are non-zero.

Given a (sparse) data set of n entries in Rm represented by a matrix A ∈ Rm×n,

we can consider a corresponding hypergraph H = (V,E) with vertex set V represent-

ing to the columns of A. Several methods exist for coarsening hypergraphs, see, e.g.,

[109]. Here, we consider a hypergraph coarsening based on column matching, which is

a modified version of the maximum-weight matching method, e.g., [109]. The modified

approach follows the maximum-weight matching method and computes the non-zero

inner product 〈a(i), a(j)〉 between two vertices i and j, i.e., the i-th and j-th columns

of A. Note that the inner product between vectors is related to the angle between the

vectors, i.e., 〈a(i), a(j)〉 = ‖a(i)‖‖a(j)‖ cos θij . The proposed coarsening strategy is to

match two vertices, i.e., columns, only if the angle between the vertices is such that,

tan θij ≤ ε, for a constant 0 < ε < 1. Another feature of the proposed algorithm is that

it applies a scaling to the coarsened columns in order to reduce the error. In summary,

we combine two columns a(i) and a(j) if the angle between them is such that, tan θij ≤ ε.
We replace the two columns a(i) and a(j) by

c(`) =

(√
1 + cos2 θij

)
a(i)

where a(i) is replaced by a(j) if the latter has more nonzeros. This minor modification
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Algorithm 4 Hypergraph coarsening by column matching.

Input: A ∈ Rm×n, ε ∈ (0, 1).
Output: Coarse matrix C ∈ Rm×c.
Idx := {1, . . . , n}
Set ip[k] := 0 for k = 1, . . . , n, and ` = 1.
repeat

Randomly pick i ∈ Idx; Idx := Idx− {i}.
for all j with aij 6= 0 do

for all k with ajk 6= 0 do
ip[k] := ip[k] + aijajk.

end for
end for
j := argmax{ip[k] : k ∈ Idx}
csqθ =

ip[j]2

‖a(i)‖2‖a(j)‖2 .

if [ (csqθ ≥ 1
1+ε2

)] then

c(`) :=
√

1 + csqθa(i). (The denser of columns a(i) and a(j))
Idx := Idx− {j}; ` = `+ 1.

else
c(`) := a(i).
` = `+ 1.

end if
Reset nonzero values of ip to zero (A sparse operation)

until Idx = ∅

provides some control over the coarsening procedure using the parameter ε and, more

importantly, it helps establish theoretical results for the method, see section 7.3.

The vertices can be visited in a random order, or in the ‘natural’ order in which

they are listed. For each unmatched vertex i, all the unmatched neighbor vertices j

are explored and the inner product between i and each j is computed. This typically

requires the data structures of A and its transpose, in that a fast access to rows and

columns is required. The vertex j with the highest non-zero inner product 〈a(i), a(j)〉 is

considered and if the angle between them is such that tan θij ≤ ε (or cos2 θij ≥ 1
1+ε2

)),

then i is matched with j and the procedure is repeated until all vertices have been

matched. Algorithm 4 provides details on the procedure.

Computing the cosine of the angle between column i and all other columns is equiv-

alent to computing the i-th row of ATA, in fact only the upper triangular part of the
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row. For sparse matrices, the inexpensive computation of the inner product between the

columns used in the algorithm is achieved by modifying the cosine algorithm in [111] de-

veloped for matrix blocks detection. Thus, loop computes all inner products of column i

with all other columns, and accumulates these in the sparse ‘row’ ip[.]. This amounts in

essence to computing the i-th row of ATA as the combination of rows:
∑

aij 6=0 aijaj,:. As

indicated in the line just before the end, resetting ip[.] to zero is a sparse operation that

does not require zeroing out the whole vector but only those entries that are nonzero.

The pairing used by the algorithm relies only on the sparsity pattern. It is clear

that these entries can also be used to obtain a pairing based on the cosine of the angles

between columns i and k. The coarse column c(p) is defined as the ‘denser of columns

a(i) and a(j)’. In other models the sum is sometimes used. Note that the number of

vertices (columns) in C will depend on the redundancy among the data and the ε value

chosen, see further discussion in sec. 7.3.

Computational Cost We saw earlier that the inner products of a given column i

with all other columns amounts to computing the nonzero values of the i-th row of the

upper triangular part of ATA. If we call AdjA(i) the set of nonzero indices of the i-th

column of A then according to what was said above, the cost of computing ip[.] by the

algorithm is ∑
j ∈ AdjA(i), j>i

|AdjAT (j)|,

where | · | is the cardinality of the set. If νc (resp. νr) is the maximum number of

nonzeros in each column (resp. row), then an upper bound for the above cost is nνrνc,

which is the same upper bound as that of computing the upper triangular part of ATA.

Several simplifications and improvements can be added to reduce the cost. First, we

can skip the columns that are already matched. In this way, fewer inner products are

computed as the algorithm progresses. In addition, since we only need the angle to be

such that tan θij ≤ ε, we can reduce the computation cost significantly by stopping as

soon as we encounter a column with which the angle is smaller than the threshold.
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5.3.1 Multilevel SVD computations

Given a sparse matrix A, we can use Algorithm 4 repeatedly with different (increasing)

ε values, to recursively coarsen the corresponding hypergraph, and obtain a sequence of

sparse matrices A1, A2, . . . , As with A0 = A, where Ai corresponds to the coarse graph

Hi of level i for i = 1, . . . , s, and As represents the lowest level graph Hs. This provides

a reduced size matrix which will likely be a good representation of the original data.

Note that, recursive coarsening will be inexpensive since the inner products required in

the further levels are already computed in the first level of coarsening.

In the multilevel framework of hypergraph coarsening we apply the matrix approx-

imation method, say using the SVD, to the coarsened data matrix As ∈ Rm×ns at the

lowest level, where ns is the number of data items at the coarse level s (ns < n). A

low-rank matrix approximation can be viewed as a linear projection of the columns into

a lower dimensional space. In other words we have a matrix Âs ∈ Rd×ns (d < m).

Applying the same linear projection to A ∈ Rm×n produces Â ∈ Rd×n (d < m), and one

can expect that Â preserves certain features of A. This linear projection is then applied

to the original data A ∈ Rm×n to obtain a reduced representation Â ∈ Rd×n (d < m) of

the original data. Another strategy for reducing the matrix dimension is to mix the two

techniques: Coarsening may still be exceedingly expensive for some types of data where

there is no immediate graph available to exploit for coarsening. In this case, a good

strategy would be to downsample first using the randomized methods, then construct a

graph and coarsen it.

5.3.2 CSSP and graph sparsification

The multilevel coarsening technique just presented can be applied for the column subset

selection problem (CSSP) as well as for the graph sparsification problem. We can use

Algorithm 4 to coarsen the matrix, and this is equivalent to selecting columns of the

matrix. The only required modification in the algorithm is that the columns selected are

no longer scaled. The coarse matrix C contains a subset of the columns of the original

matrix A and the analysis will show that it is a faithful representation of A.

For graph sparsification, we can apply the coarsening procedure on the matrix BT ,

i.e., coarsen the rows of the vertex edge incidence B, which yields us fewer edges, B̃
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with fewer rows. The analysis in the next section shows how this coarsening strategy

is indeed a spectral sparsifier, shows xT B̃T B̃x is close to xTBTBx. Since we achieve

sparsification via matching, the structures such as clusters within the original graph are

also preserved.

5.4 Analysis

In this section, we establish initial theoretical results for the coarsening technique based

on column matching. In the coarsening strategy of Algorithm 4, we combine two columns

a(i) and a(j) if the angle between them is such that tan θi ≤ ε. That is, we set c(`) =

(
√

1 + cos2 θi)a
(i) (or a(j), if it has more nonzeros) in place of the two columns in the

coarsened matrix C. We then have the following result which relates the Rayleigh

quotients of the coarsened matrix C to that of A (indicates AAT ≈ CCT , spectrally).

Lemma 3 Given A ∈ Rm×n, let C ∈ Rm×c be the coarsened matrix of A obtained

by one level of coarsening of A with columns a(i) and a(̂i) matched if tan θi ≤ ε, for

0 < ε < 1. Then,

|xTAATx− xTCCTx| ≤ 3ε‖A‖2F , (5.1)

for any x ∈ Rn : ‖x‖ = 1.

Proof. Let (i, j) be a pair of matched column indices with i being the index of

the column that is retained after scaling. We denote by I the set of all indices of the

retained columns and J the set of the remaining columns.

We know that σ2
i (A) = σi(AA

T ) = max‖x‖=1 x
TAATx, and also xTAATx = ‖ATx‖22 =∑n

i=1〈a(i), x〉2. Similarly, consider xTCCTx = ‖CTx‖22 =
∑

i∈I〈ci, x〉2 =
∑

i∈I(1 +

c2
i )〈a(i), x〉2, where indices ci = cos θi. We have,

|xTAATx− xTCCTx| = |
∑
i∈I∪J

〈a(i), x〉2 −
∑
i∈I

(1 + c2
i )〈a(i), x〉2|

≤ |
∑
j∈J
〈a(j), x〉2 −

∑
i∈I

c2
i 〈a(i), x〉2|

=
∑

(i,j)∈I×J

[
〈a(j), x〉2 − c2

i 〈a(i), x〉2
]
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where the set I×J consists of pairs of indices (i, j) that are matched. Next, we consider

an individual term in the sum. Let column a(j) be decomposed as follows:

a(j) = cia
(i) + siw,

where si = sin θi and w = ‖a(i)‖w̄ with w̄ a unit vector that is orthogonal to a(i). Then,

|〈a(j), x〉2 − c2
i 〈a(i), x〉2| =

∣∣∣〈cia(i) + siw, x〉2 − c2
i 〈a(i), x〉2

∣∣∣
=

∣∣∣c2
i 〈a(i), x〉2 + 2cisi〈a(i), x〉〈w, x〉+ s2

i 〈w, x〉2 − c2
i 〈a(i), x〉2

∣∣∣
= | sin 2θi〈a(i), x〉〈w, x〉+ sin θ2

i 〈w, x〉2|

If ti = tan θi, then sin 2θi = 2ti
1+t2i

. Using the fact that |〈w, x〉| ≤ ‖a(i)‖ ≡ ηi and

〈a(i), x〉 ≤ ηi, we get

| sin 2θi〈a(i), x〉〈w, x〉+ sin θ2
i 〈w, x〉2| ≤ η2

i sin 2θi

[
1 +

sin2 θi
2 sin θi cos θi

]
= η2

i sin 2θi

[
1 +

tan θi
2

]
≤ 2η2

i ti + (ηiti)
2

1 + t2i
≤ 2η2

i ti + (ηiti)
2.

Now, since our algorithm combines two columns only if tan(θi) ≤ ε (or cos2 θ ≥
1/(1 + ε2)), we have

|〈a(j), x〉2 − c2
i 〈a(i), x〉2| ≤ 2η2

i ε+ η2
i ε

2 ≤ 3εη2
i

as ε < 1. Thus, we have

|xTAATx− xTCCTx| ≤ 3ε
∑
i∈I
‖a(i)‖2 ≤ 3ε‖A‖2F .

�

Note that the above bound will be better in practice because the last inequality may
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not be tight. In fact improving this result could be an interesting question to inves-

tigate. We also observe that the above result will hold even if we consider combining

multiple columns which are within the angle θ = tan−1(ε) from each other into one in

Algorithm 4. The number of columns c in the coarsened matrix C will depend on the

given data (the number of pairs of columns that are within the desired angle). It can

be used to develop the following error bounds.

Theorem 5 Given A ∈ Rm×n, let C ∈ Rm×c be the coarsened matrix of A obtained by

one level coarsening of A with columns a(i) and a(̂i) combined if tan θi ≤ ε, for 0 < ε < 1.

Let Hk be the matrix consisting of the top k left singular vectors of C as columns. Then,

we have

‖A−HkH
T
k A‖2F ≤ ‖A−Ak‖2F + 6kε‖A‖2F (5.2)

‖A−HkH
T
k A‖22 ≤ ‖A−Ak‖22 + 6ε‖A‖2F , (5.3)

where Ak is the best rank k approximation of A.

Proof.

Frobenius norm error: First, we prove the Frobenius norm error bound. We can

express ‖A−HkH
T
k A‖2F :

‖A−HkH
T
k A‖2F = Tr((A−HkH

T
k A)T (A−HkH

T
k A)) (5.4)

= Tr(ATA− 2ATHkH
T
k A+ATHkH

T
k HkH

T
k A)

= Tr(ATA)− Tr(ATHkH
T
k A)

= ‖A‖2F − ‖ATHk‖2F .

We get the above simplifications using the equalities: ‖X‖2F = Tr(XTX) and HT
k Hk =

I. Let h(i) for i = 1, . . . , k be the columns of Hk. Then, the second term in the above

equation is ‖ATHk‖2F =
∑k

i=1 ‖ATh(i)‖2.

From Lemma 3, we have for each i,

|‖ATh(i)‖2 − ‖CTh(i)‖2| = |‖ATh(i)‖2 − σ2
i (C)| ≤ 3ε‖A‖2F ,
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since h(i)’s are the singular vectors of C. Summing over k singular vectors, we get

|‖ATHk‖2F −
k∑
i=1

σ2
i (C)| ≤ 3εk‖A‖2F . (5.5)

From perturbation theory [56, Thm. 8.1.4], we have for i = 1, . . . , c:

|σ2
i (C)− σ2

i (A)| ≤ ‖AAT − CCT ‖2.

Next, Lemma 3 implies:

‖AAT − CCT ‖2 = max
x∈Rn:‖x‖=1

|xT (AAT − CCT )x| ≤ 3ε‖A‖2F .

Hence, summing over k singular values,∣∣∣∣∣
k∑
i=1

σ2
i (C)−

k∑
i=1

σ2
i (A)

∣∣∣∣∣ ≤ 3εk‖A‖2F . (5.6)

Combining (5.5) and (5.6), we get∣∣∣∣∣‖ATHk‖2F −
k∑
i=1

σ2
i (A)

∣∣∣∣∣ ≤ 6εk‖A‖2F .

Along with (5.4) this relation gives us the Frobenius norm error bound, since ‖A‖2F −∑k
i=1 σ

2
i (A) = ‖A−Ak‖2F .

Spectral norm error: Let Hk = range(Hk) = span(h(1), . . . , h(k)) and let Hn−k be

the orthogonal complement of Hk. For x ∈ Rn, let x = αy+βz, where y ∈ Hk, z ∈ Hn−k
and α2 + β2 = 1. Then,

‖A−HkH
T
k A‖22 = max

x∈Rn:‖x‖=1
‖xT (A−HkH

T
k A)‖2

= max
y,z
‖(αyT + βzT )(A−HkH

T
k A)‖2

≤ max
y∈Hk:‖y‖=1

‖yT (A−HkH
T
k A)‖2 + max

z∈Hn−k:‖z‖=1
‖zT (A−HkH

T
k A)‖2

= max
z∈Hn−k:‖z‖=1

‖zTA‖2,
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since α, β ≤ 1 and for any y ∈ Hk, yTHkH
T
k = yT , so the first term is zero and for any

z ∈ Hn−k, zTHkH
T
k = 0. Next,

‖zTA‖2 = ‖zTC‖2 + [‖zTA‖2 − ‖zTC‖2]

≤ σ2
k+1(C) + 3ε‖A‖2F

≤ σ2
k+1(A) + 6ε‖A‖2F

= ‖A−Ak‖22 + 6ε‖A‖2F .

Since |‖zTA‖2−‖zTC‖2| ≤ 3ε‖A‖2F from Lemma 3, maxz∈Hn−k:‖z‖=1 ‖zTC‖2 = σ2
k+1(C),

and |σ2
i (C)− σ2

i (A)| ≤ ‖AAT − CCT ‖2 ≤ 3ε‖A‖2F . �

We observe that Theorem 6 is similar to the results developed for randomized sampling

methods, see [97, 96]. One notable difference is that to achieve the above result for

a given rank k, the method based on column norms for randomized sampling requires

c = Θ(k/ε2) columns to be sampled to form C. For a small ε, the number of columns c

will be quite large. The error for a given rank k diminishes as c increases, but when k

is large, a large number of columns will be required to get a good approximation. For

the coarsening method, the above error bounds hold for any k ≤ c, and the number

of columns c will depend primarily on the given data. The error will be smaller if the

angles between the columns that are combined are smaller. The number of columns

is related to these angles and this in turn depends on the redundancy among columns

of the given matrix. As future work it would be interesting to say how many distinct

columns will be needed to ensure that the subspace spanned by the columns of C is a

good rank k approximation to the range of A.

5.5 Numerical Experiments

Here we give few examples to illustrate the performance of coarsening in partial SVD

computation. We use three term-by-document datasets and compare the sampling,

coarsening and combined methods to compute the SVD. The tests are with unweighted

versions of the CRANFIELD dataset (1398 documents, 5204 terms), MEDLINE dataset

(1033 documents, 8322 terms) and TIME dataset (425 documents, 13057 terms).
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Figure 5.1: Results for the datasets CRANFIELD (left), MEDLINE (middle), and
TIME (right).

Figure 5.1 illustrates the following experiment with the three datasets. Results from

four different methods are plotted. The first solid curve (labeled ‘exact’) shows the

singular values of matrix A from 20 to 50 computed using the svds function in Matlab

(the results obtained by the four methods for top twenty singular values were similar).

The diamond curve labeled ‘coarsen’, shows the singular values obtained by one level of

coarsening.The star curve (labeled ‘rand’) shows the singular values obtained by random

sampling using column norms, with a sample size equal to the size obtained with one

level of coarsening. We note that the result obtained by coarsening is much better

than that obtained by random sampling. However, we know that the approximations

obtained by either sampling or coarsening cannot be highly accurate. In order to get

improved results, we can invoke incremental SVD algorithms [5].The curve with triangles

labeled ‘coars+ZS’ shows the singular values obtained when Zha Simon algorithm [5] was

used to improve the results obtained by the coarsening algorithm. Here, we consider the

singular vectors of the coarse matrix and use the remaining part of the matrix to update

these singular vectors and singular values. We have also included the results obtained

by one iteration of power method [67], i.e., from the SVD of the matrix Y = (AAT )AΩ,

where Ω is a random Gaussian matrix of same size as the coarse matrix. We see that the

smaller singular values obtained from the coarsening algorithms are better than those

obtained by the one-step power method.
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Table 5.1: CSSP: Coarsening versus leverage score sampling.

Dataset Size Rank k c Coarsening levSamp
levels error error

CRAN 1398 25 88 4 496.96 501.32
50 88 4 467.49 477.25
150 175 3 375.40 383.23

MED 1033 50 65 4 384.91 376.23
100 130 4 341.51 339.01

TIME 425 25 107 2 411.71 412.77
50 107 2 371.35 372.66
50 54 3 389.69 391.91

Kohonen 4470 25 981 2 31.89 36.36
Erdos992 6100 50 924 3 100.9 99.29
FA 10617 50 2051 3 26.33 28.37
chipcool0 20082 100 1405 4 6.05 6.14

Table 5.2: Graph Sparsification: Coarsening versus leverage score sampling.

Dataset m r nnz(K̃)
nnz(K) Coarsening levSamp

levels error error
sprand 1290 332 0.29 2 0.541 0.575

1951 499 0.28 2 0.542 0.579
2676 679 0.27 2 0.537 0.580

Maragal4 6005 460 0.11 4 0.416 0.569
rosen1 12599 1738 0.18 3 0.482 0.304
G1 19176 2486 0.14 3 0.549 0.635
bibd13-6 25428 1619 0.08 4 0.901 0.920

Column Subset Selection

In the following experiment, we compare the performance of the coarsening method

against the leverage score sampling method for column subset selection. We report

results for the same three term-by-document datasets used in the first set of experiments.

We also include results obtained for a few sparse matrices from the SuiteSparse matrix

collection.

Table 5.1 presents a few comparisons. The errors reported are the Frobenius norm

errors ‖A − PCA‖F , where PC is the projector onto span(C), and C is the coars-

ened/sampled matrix which is computed by the multilevel coarsening method or using

leverage score sampling of A with the top k singular vectors as reported in the second

column. Note that PC = HkH
T
k from Theorem 6, with k = c. The number of columns c
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in each test is reported in the third column which is the same for both methods. Recall

that for CSSP, the coarsening and sampling algorithms do not perform a post-scaling of

the columns that are selected. The multilevel coarsening method performs quite well,

yielding results that are comparable with those of leverage score sampling. Recall that

the standard leverage score sampling requires the computation of the k top singular

vectors which can be substantially more expensive than coarsening especially when k is

large.

Graph Sparsification

The next experiment illustrates how coarsening can be used for (spectral) graph sparsi-

fication. We again compare the performance of the coarsening approach to the leverage

score sampling method [32] for graph spectral sparsification. Recall that spectral spar-

sification amounts to computing a sparse graph G̃ that approximates the original graph

G such that the singular values of the graph Laplacian K̃ of G̃ are close to those of K,

Laplacian of G.

Table 5.2 lists the errors obtained when the coarsening and the leverage score sam-

pling approaches were used to compute a sparse graph G̃ for different sparse random

graphs and a few matrices related to graphs from the SuiteSparse collection. Given a

graph G, we can form a vertex edge incidence matrix B, such that the graph Laplacian

of G is K = BTB. Then, sampling/coarsening the rows of B to get B̃ gives us a sparse

graph with Laplacian K̃ = B̃T B̃. The type of graph or the names are given in the first

column of the table and the number of rows m in corresponding vertex edge incidence

matrix B is given in the second column. The number of rows r in the coarse matrix B̃

is listed in the third column. The ratios of sparsity in K̃ and K are also given. This

ratio indicates the amount of sparsity achieved by sampling/coarsening. Since, we have

the same number of rows in the coarsened and sampled matrix B̃, this ratio will be the

same for both methods. The error reported is the normalized mean absolute error in

the singular values of K and K̃, Error= 1
r

∑r
i=1

|σi(K̃)−σi(K)|
σi(K) , which tells us how close

the sparser matrix K̃ is to K spectrally (related to the result in Lemma 3). We see that

in all cases but one, the coarsening approach yields a smaller error than with leverage

score sampling.
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Figure 5.2: LSI results for the MEDLINE dataset (left) and TIME dataset (right).

5.5.1 Applications

In this section, we illustrate the performance of the coarsening technique in the various

applications introduced in section 5.2.

Latent Semantic Indexing

The first application we consider is Latent Semantic Indexing (LSI). In LSI, we have

a term-document matrix A ∈ Rm×n, representing m documents and n terms that fre-

quently occur in the documents, where Aij is the frequency of the j-th term in the i-th

document. A query is an n-vector q ∈ Rn, normalized to 1, where the j-th component

of a query vector is interpreted as the frequency with which the j-th term occurs in a

topic. Typically, the number of topics to which the documents are related is smaller

than the number of unique terms n. Hence, finding a set of k topics that best describe

the collection of documents for a given k, corresponds to keeping only the top k singular

vectors of A, and obtaining a rank k approximation. The truncated SVD and related

methods are often used in LSI applications. The argument is that a low rank approxi-

mation captures the important underlying intrinsic semantic associated with terms and

documents, and removes the noise or variability in word usage. In this experiment,

we employ the Coarsen SVD and leverage score sampling SVD algorithms to perform

information retrieval techniques by Latent Semantic Indexing (LSI) [101].

Given a term-by-document data A ∈ Rm×n, we normalize the data using TF-IDF

(term frequency-inverse document frequency) scaling. We also normalize the columns
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to unit vectors. Query matching is the process of finding the documents most relevant

to a given query q ∈ Rm.

Figure 5.2 plots the average precision against the dimension/rank k for MEDLINE

and TIME datasets. When the term-document matrix A is large, the computation of

the SVD factorization can be expensive for large ranks k. The multi-level techniques

will find a smaller set of document vectors, denoted byAr ∈ Rm×nr , to represent A

(nr < n). For leverage score sampling, we sample Ar using leverage scores with k

equal to the rank shown on the x axis. Just like in the standard LSI, we compute

the truncated SVD of Ar = UdΣdV
T
d , where d is the rank (dimension) chosen. Now

the reduced representation of A is Â = Σ−1
d UTd A. Each query q is transformed to a

reduced representation q̂ = Σ−1
d UTd q. The similarity of q and ai are measured by the

cosine distance between q̂ and â for i = 1, . . . , n. This example clearly illustrates the

advantage of the coarsening method over randomized sampling and leverage scores.

The multilevel coarsening method performs better than the sampling method in this

application and in some cases it performs as well as the truncated SVD method.

Genomics - Tagging SNPs

The second application we consider is that of DNA microarray gene analysis. The data

from microarray experiments is represented as a matrix A ∈ Rm×n, where Aij indicates

whether the j-th expression level exists for gene i. Typically, the matrix could have

entries {−1, 0, 1} indicating whether the expression exists (±1) or not (0) and the sign

indicating the order of the sequence, see supplementary material of [105] for details

on this encoding. Article [105] used CSSP with a greedy selection algorithm to select

a subset of gene expressions or single nucleotide polymorphisms (SNPs) from a table

of SNPs for different populations that capture the spectral information (variations) of

population. The subset of SNPs are called tagging SNPs (tSNPs). Here we show how

the coarsening method can be applied in this application to select columns (and thus

tSNPs) from the table of SNPs, which characterize the extent to which major patterns

of variation of the intrapopulation data are captured by a small number of tSNPs.

We use the same two datasets as in [105], namely the Yale dataset and the Hapmap
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Table 5.3: TaggingSNP: Coarsening, Leverage Score sampling and Greedy selection

Data Size c Coarsen Lev. Samp. Greedy
Yaledataset/SORCS3 1966× 53 14 0.0893 0.1057 0.0494
Yaledataset/PAH 1979× 32 9 0.1210 0.2210 0.0966
Yaledataset/HOXB 1953× 96 24 0.1083 0.1624 0.0595
Yaledataset/17q25 1962× 63 16 0.2239 0.2544 0.1595
HapMap/SORCS3 268× 307 39 0.0325 0.0447 0.0104
HapMap/PAH 266× 88 22 0.0643 0.0777 0.0311
HapMap/HOXB 269× 571 72 0.0258 0.0428 0.0111
HapMap/17q25 265× 370 47 0.0821 0.1190 0.0533

datset. The Yale dataset1contains a total of 248 SNPs for around 2000 unrelated indi-

viduals from 38 populations from around the world. We consider four genomic regions

(SORCS3,PAH,HOXB, and 17q25 ). The HapMap project2(phase I) released a public

database of 1,000,000 SNP typed in different populations. From this database, we con-

sider the data for the same four regions. Using the SNP table, an encoding matrix A

is formed with entries {−1, 0, 1}, with the same meaning of the three possible values

as discussed above. We obtained these encoded matrices, made available online by the

authors of [105], from http://www.asifj.org/.

Table 5.3 lists the errors obtained from the three different methods, namely, Coars-

ening, Leverage Score sampling and Greedy selection [105] for different populations. If

nnz(X) is the number of nonzero elements in a matrix X, the error that is reported is

given by nnz(Â−A)/nnz(A), where A is the input encoding matrix, Â = CC†A, is the

projection of A onto the sampled/coarsened C. The greedy algorithm considers each

column of the matrix sequentially, projects the remaining columns onto the considered

column and chooses the column that gives least error as defined above. The algorithm

then repeats the procedure to select the next column and so on. This algorithm is very

expensive but it performs rather well in practice. Observe that the coarsening algorithm

performs better than leverage score sampling and the performance is comparable with

that of the greedy algorithm in some cases. The coarsening approach is less expen-

sive than leverage score sampling which in turn is much less expensive than the greedy

algorithm.

1http://alfred.med.yale.edu/
2https://www.ncbi.nlm.nih.gov/variation/news/NCBI_retiring_HapMap/

http://www.asifj.org/
http://alfred.med.yale.edu/
https://www.ncbi.nlm.nih.gov/variation/news/NCBI_retiring_HapMap/
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Table 5.4: Multilabel Classification using CSSP (leverage score) and coarsening.

Data Method c Train Err Train P@k Test Err Test P@k

Mediamill, d = 101, n =
10000, nt = 2001, p = 120.

Coars 51 10.487 0.766 8.707 0.713
CSSP 51 10.520 0.782 12.17 0.377

Bibtex, d = 159, n =
6000, nt = 1501, p = 1836.

Coars 80 1.440 0.705 4.533 0.383
CSSP 80 1.575 0.618 4.293 0.380

Delicious, d = 983, n =
5000, nt = 1000, p = 500.

Coars 246 50.943 0.639 74.852 0.455
CSSP 246 53.222 0.655 77.937 0.468

Eurlex, d = 3993, n =
5000, nt = 1000, p = 5000.

Coars 500 2.554 0.591 73.577 0.3485
CSSP 500 2.246 0.504 81.989 0.370

Multilabel Classification

The last application we consider is that of multilabel classification (MLC). As seen

in section 5.2, the most common approach to handle large number of labels in this

problem is to perform a label dimension reduction assuming a low rank property of

labels, i.e., assuming that only a few labels are important. Here, we propose to reduce

the label dimension based on hypergraph coarsening. Article [108] presented a method

for MLC based on CSSP using leverage score sampling. The idea is to replace sampling

by hypergraph coarsening in this method.

Table 5.4 lists the results obtained for MLC when coarsening and leverage score

sampling (CSSP) were used for label reduction in the algorithm of [108] on different

popular multilabel datasets. All datasets were obtained from https://manikvarma.

github.io/downloads/XC/XMLRepository.html. The gist of the ML-CSSP algorithm

is as follows: Given data with a large number of labels Y ∈ Bn×d, where B is a binary

field with entries {0, 1}, the label dimension is reduced by subsampling or coarsening

the label matrix leading to c < d labels. The next step is to train c binary classifiers

for these reduced c labels. For a new data point, we can predict whether the data-point

belongs to the c reduced labels using the c binary classifiers, by getting a c dimensional

predicted label vector. We then project the predicted vector onto d dimension and then

use rounding to get the final d dimensional predicted vector.

All prediction errors reported (training and test) are Hamming loss errors, i.e., the

number of classes for which the predicted label vector differs from the exact label vector.

https://manikvarma.github.io/downloads/XC/XMLRepository.html
https://manikvarma.github.io/downloads/XC/XMLRepository.html
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The second metric used is Precison@k, which is a common metric used in the MLC

literature [10]. It measures the precision of predicting the first k coordinates |supp(ŷ1:k)∩
supp(y)|/k, where supp(x) = {i|xi 6= 0}. In the above results, we chose k =the actual

sparsity of the predicted label vector. This is equivalent to checking whether or not the

proposed method predicted all the labels the data belongs to correctly. Other values

of k such as Precision@k for k = 1, 3, 5 are used, where one is checking whether the

top 1,3 or 5 labels respectively are predicted correctly, ignoring other and false labels.

The better of the two results is highlighted. In this application too, we see that the

coarsening method performs well, outperforming the more costly CSSP method in a few

cases.



Chapter 6

Dictionary learning via rank

shrinkage

6.1 Introduction

We introduced the dictionary learning problem in the first chapter. In this chapter, we

explore linear algebra tools for dictionary learning. The dictionary learning problem

is popular and several algorithms have been proposed in the literature to address the

problem [112, 37, 38]. Most of these algorithms are comprised of two stages: a sparse

coding stage and a dictionary update stage. In the first stage, the dictionary D is fixed

and the sparsity constraint is used to compute a sparse linear approximation X for the

given signals Y . In the second stage, using the current sparse approximation X (some-

times called codes), the dictionary D is updated such that a certain cost function is

minimized. Different cost functions have been used in the literature for the dictionary

update stage in order to achieve different objectives. For example, the Frobenius norm

with column normalization has been widely used. The dictionary learning methods

iterate between the sparse coding stage and the dictionary update stage until conver-

gence. The algorithms differ in the details of the approaches used for estimating X and

updating D.

The coherence µ(D) is a property that characterizes the similarity between different

atoms of the dictionary. It is defined as the maximum correlation of any two dictionary

90
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atoms

µ(D) = max
1≤i,j≤N,i 6=j

| 〈di, dj〉 |, (6.1)

also known as mutual coherence. An alternate measure that can be used to characterize

the coherence property of dictionaries, and which is used in this chapter is the average

coherence defined as

ν(D) = max
1≤j≤N

1

N − 1

N∑
i=1,i 6=j

| 〈di, dj〉 | . (6.2)

A dictionary with small coherence is referred to as an incoherent dictionary. In most

applications, the dictionary learned is desired to be incoherent, since incoherent dictio-

nary atoms are distinct and yield better representations of data and signals [113, 114].

In this chapter, we present a new incoherent dictionary learning algorithm based on

rank shrinkage.

Related Work: The iterative solution MOD (Method of Optimal Directions) pro-

posed in [112], where a pursuit algorithm is used in the first stage of the iteration, re-

sults in a good but a suboptimal solution. Given the set of signals Y = [y1, y2, . . . , yN ],

the first stage of MOD consists of estimating the sparse codes xi, i = 1, . . . , N that

constitute the columns of the matrix X by fixing D and solving

x̂i = arg min
xi
‖ yi −Dxi ‖2; subject to ‖ xi ‖0≤ s i = 1, . . . , N,

where s � K. The vectors xi are the sparse representations of the signals yi, and are

computed using the current dictionary D. Many sparse coding algorithms have been

proposed to solve the above optimization problem, e.g. see [115, 116], that can be used

in this stage. The MOD algorithm is perhaps the simplest algorithm that finds D by

minimizing ‖ Y −DX ‖2F with respect to D. This amounts to

D = arg min
D
‖ Y −DX ‖2F= Y X>

(
XX>

)−1
. (6.3)

The low coherence of the dictionary can be enforced in the dictionary learning al-

gorithm in two different ways. The first strategy is to add into the dictionary learning
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problem (6.10), a term that characterizes the incoherence objective of the learned dictio-

nary. This is the approach adopted in [113] where the penalty term ‖ G− I ‖2F , where

G = D>D defines the Gram matrix, is used to enforce incoherence. An alternative

strategy for learning incoherent dictionaries is to include a decorrelation step after the

dictionary update stage to improve the incoherence of the dictionary at each iteration

of the algorithm. This is the approach adopted in [114], where the incoherence of the

resulting dictionary D from the dictionary update stage is improved by minimizing the

Frobenius norm between D and the final dictionary D∗, ‖ D−D∗ ‖2F subject to the con-

straint µ(D∗) ≤ µ0, where µ0 is the targeted coherence. A similar strategy of including

a decorrelation step was proposed in [117], but with a different decorrelation method.

The method presented in this chapter, follows up on the MOD [112] algorithm and

proposes an improvement by reducing the coherence of the learned dictionary using a

rank shrinkage step. This step is added to the dictionary update stage in order to learn

a dictionary with reduced coherence that is adapted to the set of signals Y .

6.2 Incoherence via rank shrinkage

In this section, we present an approach to improve the incoherence of the dictionary

learned at each iteration of the algorithm based on rank shrinkage. The new method

for rank shrinkage is based on the rank one decomposition of D obtained from (6.3),

which we will call DOLS , and nonnegative garrotte estimation problem.

The reduced rank estimation or the rank shrinkage imposes a rank constraint on the

dictionary D, by estimating D under the constraint rank(D) = r for r ≤ n. First, we

consider the rank one decomposition based on the singular value decomposition (SVD),

and write the ordinary least square solution DOLS in (6.3) as

DOLS =
n∑
i=1

σiuiv
>
i =

n∑
i=1

D̂i, (6.4)

where σi’s are the singular values of D, ui and vi are the corresponding left and right

singular vectors, respectively, and D̂i = σiuiv
>
i , i = 1, . . . , n are rank one matrices.

Hence, the estimate of D with rank r ≤ n that minimizes (1.6) (using the Eckart-Young
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theorem [24]) is given by

Dr =
r∑
i=1

σiuiv
>
i =

r∑
i=1

D̂i. (6.5)

To obtain an improved reduced rank dictionary, we propose an adaptive shrinkage ver-

sion of (6.5), based on the extension of (6.4) to

Dsh =

n∑
i=1

αiD̂i, (6.6)

where αi are weights assigned to the ith component (rank one matrix) D̂i. Next, the

idea is to control the weights of all the components using the information of signals Y ,

and shrink some of the weights to zero, based on a criterion that involves Y . This is

achieved by considering the weights αi as regression coefficients of a certain univariate

linear model, and estimate them using a suitable sparsity promoting method. Since

the weights αi can not be negative, we propose to use the nonnegative garrotte [118]

method as it is well suited for this situation.

In order to form the nonnegative garrotte, we first form a vector ȳ of length (n ∗N)

by vectorizing Y . Similarly, we form n vectors z̄i of length (n ∗ N) by vectorizing

D̂iX, i = 1, . . . , n. Next, we form a matrix Z of size(n ∗ N) × n by concatenating z̄i.

Then, we estimate the sparse weight vector α = (α1, . . . , αn) using the nonnegative

garrotte [118] defined as

α = arg min
α
‖ ȳ − Zα ‖22 +λ

n∑
i=1

αi subject to αi ≥ 0

= arg min
α
‖ ȳ −

n∑
i=1

z̄iαi ‖22 +λ
n∑
i=1

αi subject to αi ≥ 0. (6.7)

The optimization problem in (6.7) can be solved using a path-wise coordinate descent

approach. The coordinate-wise update for the weight vector α will be of form

αi =

(
z̄>i ȳi − λ
z̄>i z̄i

)
+

, i = 1, . . . , n (6.8)

where ȳi = ȳ −
∑n

j=1,j 6=i z̄iαi. The parameter λ can be tuned to obtained the desired
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rank shrinkage in the dictionary D, and in turn control its coherence.

Algorithm 5 Stepwise description of the proposed dictionary learning algorithm

Input: Y , Dini, s, λ, ε and J.
Output: D,X.
Set D = Dini.
For it = 1 to J
1. Sparse Coding Stage:

Find sparse coefficients X, by approximately solving

x̂i = arg min
xi
‖ yi −Dxi ‖2; subject to ‖ xi ‖0≤ s i = 1, . . . , N.

2. Dictionary Update Stage:

Generate the OLS solution DOLS = Y X>
(
XX>

)−1
.

2.a: Using the SVD compute DOLS =
∑n

i=1 D̂i.
2.b: Construct the vectors ȳ and z̄i, i = 1, . . . , n.
2.c: Estimate the weights αi, i = 1, . . . , n as
While ||αiter −αiter−1||22 ≥ ε do

For i = 1 to n
Compute ȳi = y −

∑n
j=1,j 6=i z̄iαi

Compute the components αi =
(
z̄>i ȳi−λ
z̄>i z̄i

)
+

end
iter = iter + 1
end while
2.d: Form D =

∑n
i=1 αiD̂i.

end

Algorithm: The proposed algorithm is summarized in Algorithm 5, which includes

the rank shrinkage step to obtain a more stable and incoherent dictionary D.

6.3 Analysis

The purpose of the rank shrinkage step in Algorithm 5 is to remove collinearity between

the atoms (decorrelate). In this section, we show that the rank shrinkage step indeed

reduces the coherence of the dictionary.

Proposition 1 The rank shrinkage step in Algorithm 5 reduces the mutual coherence

µ(D) of the learned dictionary.
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The following Lemma which gives a relation between the smallest non zero singular

value and the mutual coherence of a matrix, and the arguments that follow this lemma

provide the theoretical justification for the above proposition.

Lemma 4 Given a dictionary D = [d1, d2, . . . , dK ], such that ‖dk‖ = 1, k = 1, . . . ,K

and |〈didj〉| < 1 for any i 6= j, Let us define inf(D) := mint/∈Null(D),‖t‖=1 ‖Dt‖. Suppose

that

inf(D) = min
t/∈Null(D),‖t‖=1

‖Dt‖ ≥
√

1− η.

Then we have µ(D) ≤ η.

Proof. For the given dictionary D, let G = D>D define the corresponding Gram

matrix. Let us write G = I − H. The diagonal entries of H are zero. Then, for any

vector t of norm 1, with t /∈ Null(D), we have

‖Dt‖2 = 〈DTDt, t〉 = 〈(I −H)t, t〉 = 1− 〈Ht, t〉 ≥ 1− η.

As a result, for any vector t /∈ Null(D):

〈Ht, t〉 ≤ η. (6.9)

Since the mutual coherence is the maximum off-diagonal entry of G, we are interested

in the off-diagonal entries hij (which are −gij) for i 6= j. Let i, j be any pair with i 6= j

and take the vector

tij =
1√
2

[ei + σej ] with σ = sign(hij).

Then a little calculation shows that

〈Htij , tij〉 = |hij |.

Next, consider

‖Dtij‖2 =
1

2
‖di ± dj‖2 =

1

2
[‖di‖2 + ‖dj‖2 ± 2〈di, dj〉] = 1± 〈di, dj〉 > 0.

This is due to the assumption that |〈di, dj〉| < 1 for i 6= j. Therefore, tij does not belong

to the null space of D, and from (6.9) we get |hij | < η. This proves the lemma. �
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Remark 4 If we assume that mint/∈Null(D),‖t‖=1 ‖Dt‖ ≥ 1− η, then we would get a

bound of the form µ(D) ≤ η(2− η).

Observe that in Lemma 4, the term inf(D) is the smallest non-zero singular value of

the dictionary D. The argument is as follows: If inf(D) increases after rank shrinkage,

one can choose a lower value for the parameter η in Lemma 4 such that inf(D) ≥
√

1− η,

still holds. Then, by the statement of Lemma 4, µ(D) ≤ η satisfies for this lower value

of η, which means µ(D) must reduce. Therefore, we need to show that the smallest

non-zero singular value of the dictionary increases after our rank shrinkage step, for the

coherence of the dictionary to decrease.

Let σi, i = 1, . . . , n be the singular values of the dictionary D before rank shrinkage

labeled decreasingly, then inf(D) = σn. The singular values of the dictionary Dr after

rank shrinkage will be αiσi, i = 1, . . . , r. Thus, for Proposition 1 to hold, we need

αrσr > σn.

Clearly, σr > σn, and the coefficients αi’s are chosen such that they penalize only the

smaller singular values (corresponding to near collinear subspaces). For the relevant

atoms in the dictionary, the inner product z̄>i ȳi in the updates of the coefficients αi

(eq. (6.8)), the coefficients which control the rank) will be high, and αi will be large.

So, such atoms are not removed (instead are promoted). Hence, we suggest to use a

small tuning parameter λ in eq. (6.8). More importantly, since the overall energy of

the dictionary needs to be constant before and after rank shrinkage since the columns of

the dictionaries must have unit norms, the nonzero singular values of the rank shrunk

matrix must be relatively higher to balance the energy from the singular values that

were removed. This justifies Proposition 1.

A reduction in µ(D) will likely reduce the average coherence ν(D). We have the

following relation between the two measures : ν(D) ≤ K
K−1µ(D). (If the maximum

value of correlation is reduced, the maximum of the average of correlations is likely to

reduce.)

Coherence and the eigenvalues of the Gram matrix: In section 6.2, we saw

how the eigenvalues of the Gram matrix D>D that are close to zero (due to near
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collinearity) results in poor least squares solutions. The following argument gives further

insight on the relation between the eigenvalues of the Gram matrix (which are squares

of the singular values of the dictionary), collinearity, least squares solutions and mutual

coherence.

Consider the sparse coding stage (updating X). The columns of X in the sparse

coding stage are obtained as the solutions of

x̂i = arg min
x
‖yi −DIix‖22 i = 1, ..., N,

and their variance-covariance matrix is given by

Var(x̂i) = σ2
(
D>IiDIi

)−1
= σ2UIiΛ

−1
Ii UIi i = 1, ..., N, (6.10)

where Ii represents the set of selected atoms with Ki cardinality, σ2 is the noise variance

and D>D is the Gram matrix with eigen-decomposition D>D = UΛU> and rank r.

We will drop the index i below.

The variance of each component of x̂i is given by

Var(x̂ij ) = σ2
r∑
l=1

u2
jl

λl
= σ2

r∑
l=1

a2
jl

λ2
l

,

where ujl is the lth component of uj (column of U) and ajl = ujlλl is the lth component

of aj = ujΛ. Then, the total variance is given by

r∑
j=1

Var(x̂ij ) = σ2
r∑
j=1

r∑
l=1

a2
jl

λ2
l

= σ2
r∑
l=1

r∑
j=1

a2
jl

λ2
l

= σ2
r∑
l=1

1

λl
. (6.11)

Now we observe that, if any one of the eigenvalues is very close to zero, the mean of

the variances of the estimated sparse codes will increase to a very large extent. We

saw in section 6.2 that, the eigenvalues are close to zero if the correlations between the

dictionary atoms are high, that is, it depends on the extent of multicollinearity.

If the eigenvalues are decreasingly ordered λ1 ≥ . . . ≥ λr, then we have the following

relations:
r∑
l=1

1

λl
≤

r∑
l=1

1

λr
=

r

λr
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and

Var(x̂ij ) = σ2
(
D>IiDIi

)−1

jj
≥ σ2,

which lead to

rσ2 ≤
r∑
j=1

Var(x̂ij ) ≤
rσ2

λ1
.

If all the dictionary atoms are orthogonal (incoherent), the above inequality becomes an

equality, since in this case, all eigenvalues are 1. If any one of the eigenvalues is close to

zero, the variances of the estimated sparse codes will be very large according to (6.11).

Hence, if the correlation among the dictionary atoms is considerable (coherent), the

variance of the sparse code coefficients will be too large due to the inversion formula given

in (6.10) (the analysis of the individual effect of the variables will be less meaningful

here). Hence, it is necessary to quantify multicollinearity.

Incoherence and the mutual coherence µ(D) measure characterize the departure

from orthogonality. If the dictionary atoms are strongly coherent, the matrix D>IiDIi is

ill-conditioned, and while the least squares estimator still exists, it will be very unstable

(due to large variance). Recall that, the smallest eigenvalue of DIi is smaller than that

of D by the interlacing theorem. Therefore, reducing the rank , i.e., a smaller r, will

mean a larger nonzero smallest eigenvalue λr (in turn larger inf(D)) and a reduced

variance, and will result in more stable least squares solution.

6.4 Numerical Experiments

In this section, we present two numerical examples to demonstrate the performance of

the proposed method. We consider the dictionary recovery problem of a small random

dictionary with uniform distribution. We generate N = 2000 signals Y from a random

dictionary with uniform distribution D with n = 20, k = 50 and s = 4. We add a small

amount of noise to the signals Y (the strength of the signal is SNR = 20dB). The

objective is to recover a dictionary D̃ from the signals Y that is as close to the original

dictionary D as possible using the dictionary learning (DL) algorithms. Figure 6.1

compares the results obtained for the five different dictionary learning (DL) algorithms

considered.

The left plot in figure 6.1 plots the number of dictionary atoms (averaged over 10
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Figure 6.1: Recovery of a random dictionary with uniform distribution.

trials) in the dictionary recovered that are within the given angle β (in degrees) from

the original dictionary atoms for the five different dictionary learning algorithms. The

angle β is defined as

βi =
cos−1(〈d̃i, di〉)
‖d̃i‖2‖di‖2

, i = 1, . . . ,K.

All algorithms were run for 50 iterations and 10 trials. For the proposed algorithm

(MOD-G, for MOD+garotte) we set λ = 10, and for INKSVD and IPR we set µ0 = 0.8

(the parameters were tuned until we obtain similar average coherence by all the three

methods). In all the five algorithms, for the sparse coding stage, we use the Orthogonal

Matching Pursuit (OMP) algorithm [116], and we initialize the dictionary Dini with

randomly chosen samples of Y . The right plot in figure 6.1 plots the mean angle β of

the dictionaries obtained at each iteration for the different DL algorithms. We observe

that the proposed algorithm requires fewer iterations (converges faster) to recover a

closer dictionary than the other algorithms.

Audio signal representation: In the next experiment, we assess the performance

of the proposed DL algorithm in recovering a set of audio signals, such that the dictio-

nary has bounded average coherence and provides good approximation to the signals.

For this, we will consider the same dataset considered in the INKSVD paper [114] and

the IPR paper [117], and compare the performances of the three incoherent DL algo-

rithms. The audio signals considered are excerpts of a 16kHz guitar recording named
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Figure 6.2: Audio signal representations.

music03 16kHz, and is part of the data available in the SmallBox1 toolbox. The toolbox

also contains all the codes to reproduce the following experiment (expect the code for

the proposed algorithm).

We consider exactly the same experiment demonstrated in [114, 117], where the

recording is divided into 50% overlapping blocks of 256 samples (16 ms each) and the

resulting signals is arranged as columns of the signal matrix Y . The size of Y is 256×624.

Next, the dictionary is initialized to be twice overcomplete, ie., the size of the dictionary

is 256 × 512. The three incoherent DL algorithms (MOD-G, IPR and INKSVD) were

run for 20 iterations, setting s = 12 non-zero coefficients in each sparse representation.

In IPR and INKSVD, we set µ0 = 0.5 (for values below this, the performances of all

three methods were poor and were hard to compare), and in MOD-G we set λ = 16,

such that all three methods give ν(D) around 0.37 after 20 iterations. Figure 6.2 depicts

the performances of the three methods when the dictionaries were initialized using i) a

randomly chosen subset of the training data and ii) Gabor dictionary [38].

The left plot of figure 6.2 plots the SNR of the recovered signal obtained by the three

incoherent DL algorithms for each of iterations, when the dictionary was initialized

using a randomly chosen subset of the training data. The right plot gives the SNR

v/s iterations plot for the three algorithms for Gabor dictionary initialization. The

1SmallBox is an open source MatLab toolbox, containing codes and datasets for testing and
benchmarking various dictionary learning algorithms http://www.small-project.eu/software-data/
smallbox/.

http://www.small-project.eu/software-data/smallbox/
http://www.small-project.eu/software-data/smallbox/
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experiments were run over 5 independent trials. The plots give the averages and the

standard deviations of the SNRs obtained at each iteration over the different trials. We

observe that the proposed method is better than IPR, but the performance of INKSVD

is superior to the other two methods.

However, we observe that each iteration of MOD-G is inexpensive compared to IPR

and INKSVD. The 20 iterations of MOD-G algorithm took on an average 320 secs,

averaged over the 10 (5+5) trials, to run on a 3.3 GHz Intel Core i5 machine executed

using Matlab R2013a and using cputime function. The 20 iterations of IPR took a

total of 1110 secs on average to run. IPR was over 3 times slower than MOD-G, this

is because in each iteration of IPR, we need to compute an eigenvalue decomposition

of a coherent constrained Gram matrix to threshold the eigenvalues, and also compute

an SVD to rotate the dictionary. There are many additional matrix-matrix products in

an IPR iteration compared to MOD-G. The 20 iterations of INKSVD took an average

of 2067 secs. INK-SVD takes longer (almost 7 times longer than MOD-G) to compute

less coherent dictionaries. This is because INK-SVD acts in a greedy fashion by decor-

relating pair of atoms until the target mutual coherence is reached (or until a maximum

number of iterations) and therefore the number of pairs of atoms to decorrelate increases

for low values of the target coherence. For additional results and timing comparisons

between IPR and INKSVD, see [117]. Hence, INKSVD gives a superior performance

at the expense of higher per iteration runtime cost. The proposed DL algorithm pro-

duces comparable results, and is significantly faster (in terms of per iteration runtime)

compared to the other two incoherent DL algorithms.
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Chapter 7

Low rank approximation - Codes

for sampling

7.1 Introduction

Many scientific computations, signal processing, data analysis and machine learning ap-

plications lead to large dimensional matrices that can be well approximated by a low

dimensional (low rank) basis. It is more efficient to solve many computational problems

by first transforming these high dimensional matrices into a low dimensional space, while

preserving the invariant subspace that captures the essential information of the matrix.

Several algorithms have been proposed in the literature for finding low rank approxima-

tions of matrices [22, 67, 96]. Recently, research focussed on developing techniques that

use randomization for computing low rank approximations and decompositions of such

large matrices [67]. It was found that randomness provides an effective way to construct

low dimensional bases with high reliability and computational efficiency. Similar ideas

based on random sampling have been proposed in the recent literature for solving least

squares (`2) linear regression problems [119, 120, 67].

Randomization techniques for matrix approximations aim to compute a basis that

approximately spans the range of an m × n input matrix A, by sampling the matrix

A using random matrices, e.g. i.i.d Gaussian [67]. This task is accomplished by first

forming the matrix-matrix product Y = AΩ, where Ω is an n × ` random matrix of

smaller dimension ` � {m,n}, and then computing the orthonormal basis of Y = QR
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that identifies the range of the reduced matrix Y . It can be shown that A ≈ QQ>A with

high probability. It has been shown that structured random matrices, like subsampled

random Fourier transform (SRFT) and Hadamard transform (SRHT) matrices can also

be used in place of fully random matrices [121, 120].

The input matrices, whose low rank approximation is to be computed, usually have

very large dimensions (e.g., in the order of 106 − 109 [67, 122]). In order to form a

Gaussian (a fully) random matrix that samples the input matrix, we need to generate

a large quantity of random numbers. This could be a serious practical issue (in terms

of time complexity and storage). This issue can be addressed by using the structured

random matrices, like SRFT and SRHT matrices. An important practical advantage of

using these structured random matrices is that their structure allows the computation of

matrix-matrix product at a cost of O(mn log2 `) making the algorithms fast (also known

as fast transforms) for general dense input matrices. However, with these matrices,

mixing of columns might not be as uniform (some of the entries of the Fourier transform

might have very large magnitude), and there is potential loss in the accuracy (i.e., the

performance of SRHT/SRFT matrices in place of Gaussian matrices with same number

of samples ` (or even slightly higher) is worse).

Another drawback with fast transforms is that for parallel and distributed applica-

tions, particularly when the input matrix is sparse and/or its columns are distributively

stored, it is found that FFT-like algorithms are significantly slower due to communica-

tion issues or other machine related issues (machines are optimized for matrix-vector

operations) [122]. Also for a rank-k approximation, these matrices require sampling

` = O(k log k) columns. Other practical issues arise such as: the Fourier Transform

matrices require handling complex numbers and the Hadamard matrices exist only for

the sizes which are in powers of 2. All these drawbacks can be overcome if the code

matrices presented in this chapter are used for sampling the input matrices.

In digital communication, information is encoded by adding redundancy to predom-

inantly binary vectors or codewords, that are then transmitted over a noisy channel [40],

(introduced in the first chapter). These codewords are required to be far apart in terms

of some distance metric for noise-resilience. Coding schemes usually generate codewords

that maintain a fixed minimum Hamming distance between each other, hence they are
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widespread and act like random vectors. We can define probability measures for matri-

ces formed by stacking up these codewords as seen in the first chapter. Here, we explore

the idea of using subsampled versions of these code matrices as sampling (sketching)

matrices in the randomized techniques for matrix approximations.

Similar to Fourier and Hadamard sampling matrices, fast multiplication is possi-

ble with code matrices from certain class of codes due to their structure. Hence, fast

approximations can be achieved for general dense input matrices, since the matrix-

matrix product AΩ can be computed in O(mn log2 `) cost with such code matrices. In

addition, the shortcomings of SRFT/SRHT matrices in parallel and distributed envi-

ronments, and in data streaming models can be overcome by using code matrices. For

certain code matrices, the logarithmic factor in the number of samples is not required.

This is a significant theoretical result that shows that order optimality can be achieved

in the number of samples required with partially random matrices.

One of the key applications where the randomized approximation (or sketching)

algorithms are used is in approximately solving overdetermined least squares regression

problem faster [119, 120, 67]. Here, we are given a matrix A ∈ Rn×d and a vector b ∈ Rn,

with n � d. The goal is to solve the least squares regression problem minx ‖Ax − b‖2
faster, (where ‖.‖2 is `2 norm) and output a vector x′ such that, with high probability,

‖Ax′ − b‖2 ≤ (1 + ε)‖Ax̂− b‖2,

where x̂ is the `2 minimizer given by the Moore-Penrose pseudo inverse of A, i.e., x̂ = A†b

[56]. For details on the applications where we encounter such extremely overdetermined

linear system of equations, we refer to [122]. The idea of randomized approximation is

to use a sampling (sketching) matrix to reduce the dimensions of A and b, and then

solve the smaller problem to obtain x′.

In this chapter, we advocate the use of error correcting coding matrices for random-

ized sampling of large matrices in low rank approximations and other applications, and

show how specific classes of code matrices can be used in different computational envi-

ronments to achieve the best results possible (amongst the existing sampling matrices).

The key theoretical result we present is that, the (1 + ε) optimal (Frobenius and

spectral norms) error bounds can be achieved with O(k/ε) samples when certain classes
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of code matrices (code matrices with dual distance > k) are used for sampling. We

discuss how different classes of code matrices with desired properties (for sampling) can

be generated and used in practice. We also discusses the advantages of code matrices

over other classes of sampling matrices in the parallel and distributed environments, and

also in the data streaming models. With the sizes of the datasets increasing rapidly, we

believe such advantages of code matrices become significantly important, making them

more appealing for a range of applications where such randomized sampling is used.

7.2 Construction of subsampled code matrix

For an input matrix A of size m × n and a target rank k, we choose r ≥ dlog2 ne as

the dimension of the code (length of the message vector) and ` > k as the length of the

code. The value of ` will depend on the coding scheme used, particularly on the dual

distance of the code. We consider an [`, r]-linear coding scheme and form the sampling

matrix as follows: We draw the sampling test matrix say Ω as

Ω =

√
2r

`
DSΦ, (7.1)

where

• D is a random n×n diagonal matrix whose entries are independent random signs,

i.e., random variables uniformly distributed on {±1}.

• S is a uniformly random downsampler, an n×2rmatrix whose n rows are randomly

selected from a 2r × 2r identity matrix.

• Φ is the 2r × ` code matrix, generated using an [`, r]-linear coding scheme, with

BPSK mapping and scaled by 2−r/2 such that all columns have unit norm.

Intuition The design of a Subsampled Code Matrix (SCM) is similar to the design

of SRFT and SRHT matrices. The intuition for using such a design is well established

in [123, 67]. The matrix Φ has entries with magnitude ±2−r/2 and has orthonormal

columns when a coding scheme with dual distance of the code ≥ 3 is used.
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The scaling
√

2r

` is used to make the energy of the sampling matrix equal to unity,

i.e., to make the rows of Ω unit vectors. The objective of multiplying by the matrix

D is twofold. The first purpose is to flatten out the magnitudes of input vectors, see

[123] for the details. For a fixed unit vector x, the first component of x>DSΦ is given

by (x>DSΦ)1 =
∑n

i=1 xiεiφj1, where φj1 are components of the first column of the

code matrix Φ, with the indices j’s are such that Sij = 1 for i = 1, . . . , n and εi is

the Rademacher variable from D. This sum has zero mean and since entries of Φ have

magnitude 2−r/2, the variance of the sum is 2−r. The Hoeffding inequality shows that

P{|(x>DSΦ)1| ≥ t̃} ≤ 2e−2r t̃2/2.

That is, the magnitude of the first component of x>DSΦ is about 2−r/2. Similarly, the

argument holds for the remaining entries. Therefore, it is unlikely that any one of the `

components of x>DSΦ is larger than
√

4 log `/2r (with a failure probability of 2`−1).

The second purpose of multiplying by D is as follows: The code matrix Φ with

a dual distance > k forms a deterministic k-wise independent matrix. Multiplying

this Φ matrix by D (with independent random signs on the diagonal) results in a k-

wise independent random matrix. Note that uniform downsampling of the matrix will

not affect this property. Hence, the subsampled code matrix SCM Ω will be a k-wise

independent random matrix.

The downsampler S is a formal way of saying, if n < 2r, we choose n out of 2r

possible codewords to form the sampling matrix Ω. Uniform downsampling is used in

the theoretical analysis to get an upper bound for the singular values of Ω. In practice,

we choose n numbers between 1 to 2r, use the binary representation of these numbers

as the message vectors (form M) and use the generator matrix G of the coding scheme

selected to form the sampling matrix Ω, using (1.7) and BPSK mapping. For dense

input matrices, it is advantageous to choose these numbers (message vectors) to be 1 to

2dlog2 ne, to exploit the availability of fast multiplication.

7.2.1 Algorithm

We use the same prototype algorithm as discussed in [67] for the low rank approximation

and decomposition of an input matrix A. The subsampled code matrix (SCM) Ω given
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in (7.1), generated from a chosen coding scheme is used as the sampling test matrix.

The algorithm is as follows:

Algorithm 6 Prototype Algorithm

Input: An m× n matrix A, a target rank k.

Output: Rank-k factors U,Σ, and V in an approximate SVD A ≈ UΣV >.

1. Form an n × ` subsampled code matrix Ω, as described in (7.1), using an

[`, r]−linear coding scheme, where ` > k and r ≥ dlog2 ne.
2. Form the m× ` sample matrix Y = AΩ.

3. Form an m× ` orthonormal matrix Q such that

Y = QR.

4. Form the `× n matrix B = Q>A.

5. Compute the SVD of the small matrix B = ÛΣV >.

6. Form the matrix U = QÛ .

Computational cost Many, if not most of the structured codes can be decoded

using the Fast Fourier Transform (FFT). The corresponding 2r × ` code matrix Φ of

such structured codes (after BPSK mapping) will have every column of Φ equal to

some column of a 2r × 2r Hadamard matrix, see definition 2.2 in [124]. Hence, for a

general dense matrix in RAM, the matrix-matrix product Y = AΩ with these structure

code matrices can be computed in O(mn log2 `) time using the ‘Trimmed Hadamard

transform’ technique described in [124].

Fast multiplications are possible with matrices from another class of codes known as

cyclic codes. In cyclic codes, a circular shift of a codeword results in another codeword

of that code. So, a 2r× ` code matrix Φ generated using an [`, r]-cyclic code scheme will

consist of 2r/` blocks of circulant matrices of size `×` (when appropriately rearranged).

It is known that the matrix-vector products with circulant matrices can be computed

in O(` log2 `) operations via FFT [56]. So, for a general dense input matrix, the matrix-

matrix product Y = AΩ with such cyclic code matrices can be computed in O(mn log2 `)

time.
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7.3 Analysis

This section discusses the performance (error) analysis of the subsampled code matrices

(SCM) as sampling matrices in Algorithm 6. We will prove that an approximation error

of (1 + ε) times the best rank-k approximation (Frobenius norm error) possible for a

given matrix A can be achieved with code matrices. That is,

‖A− Âk‖F ≤ (1 + ε)‖A−Ak‖F ,

where Âk is the rank-k approximation obtained from Algorithm 6 and Ak is the best

rank-k approximation. In order to prove this, we show that SCM satisfies two key

properties, the Johnson Lindenstrauss Transforms (JLT) and the subspace embedding

properties via the k-wise independence property of the codes. We also derive the bounds

for the spectral norm error and the singular values obtained, based on the deterministic

error bounds in the literature for the algorithm for a given sampling matrix Ω.

7.3.1 Setup

Let A be an m×n input matrix with SVD given by A = UΣV >, and partition its SVD

as follows

A = U

k n− k[ ]
Σ1

Σ2

n[ ]
V >1 k

V >2 n− k
. (7.2)

Let Ω be the n× ` test (sampling) matrix, where ` is the number of samples. Consider

the matrices

Ω1 = V >1 Ω and Ω2 = V >2 Ω. (7.3)

The objective of any low rank approximation algorithm is to approximate the subspace

that spans the top k left singular vectors of A. Hence, for a given sampling matrix Ω,

the key challenge is to show that Ω1 is full rank. That is, we need to show that for any

orthonormal matrix V of dimension k, with high probability V >Ω is well conditioned

[67]. This is true if the test matrix Ω satisfies the subspace embedding property, and it
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is said to preserve the geometry of an entire subspace of vectors V .

7.3.2 Subsampled code matrices, JLT and subspace embedding

Here, we define the two key properties which will be used frequently in our theoretical

analysis. First is the Johnson-Lindenstrauss Transform (JLT) [125] which played a

key role in the development of embedding-based randomized sampling. Sarlos [126]

developed the important relation between JLT and random matrix sampling (also known

as subspace embedding). The JLT property is defined as [126]:

Definition 1 (Johnson-Lindenstrauss Transform) A matrix Ω ∈ Rn×` forms a

Johnson-Lindenstrauss Transform with parameters ε, δ, d or JLT(ε, δ, d) for any 0 <

ε, δ < 1, if for any d-element set V ⊂ Rn, and for all v ∈ V it holds

(1− ε)‖v‖22 ≤ ‖Ω>v‖22 ≤ (1 + ε)‖v‖22

with probability 1− δ.

The other key property which the code matrices need to satisfy is the subspace

embedding property defined below.

Definition 2 (Subspace Embedding) A matrix Ω ∈ Rn×` is a (1 ± ε) `2-subspace

embedding for the row space of an m×n matrix A, if for an orthonormal basis V ∈ Rn×k

that spans the row space of A, for all x ∈ Rk

‖Ω>V x‖22 = (1± ε)‖V x‖22 = (1± ε)‖x‖22,

where ‖Ω>V x‖22 = (1± ε)‖x‖22 stands for (1− ε)‖x‖22 ≤ ‖Ω>V x‖22 ≤ (1 + ε)‖x‖22.

The above definition is useful when the sampling is achieved column-wise. A similar

definition for row-wise sampling holds for an orthonormal matrix U ∈ Rm×k which

spans the column space of A, see [28]. The above definition simplifies to the following

condition:

‖V >ΩΩ>V − I‖2 ≤ ε. (7.4)

The matrix Ω with subspace embedding property, satisfying the above condition is said

to approximately preserve the geometry of an entire subspace of vectors [123].
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Recall the construction of the ‘tall and thin’ n× ` subsampled error correcting code

matrix Ω. The critical requirement to prove the (1 + ε) optimal error bound is to show

that these matrices satisfy the two key properties: JLT and subspace embedding. The

subspace embedding property will also imply that Ω1 will be full rank, which will enable

us use the deterministic bounds developed in the literature to derive the bounds for the

spectral norm error and the singular values obtained.

Johnson-Lindenstrauss Transform

We saw the definition of JLT above, which says that a matrix Ω that satisfies JLT(ε, δ, d)

preserves the norm for any vector v in a d-element subspace V ⊂ Rn. We will use two

key results developed in the literature to show that code matrices with certain mild

properties satisfy the JLT property.

The first result is by Ailon and Liberty [124], where they show a matrix Ω which is

4-wise independent will satisfy the JLT property, see Lemma 5.1 in [124]. Interestingly,

they give the 2 error correcting dual BCH codes as examples for such 4-wise independent

matrices and also demonstrate how fast multiplications can be achieved with these code

matrices. However, a minor drawback with using 4-wise independent matrices is that

the maximum entries of A need to be restricted.

The second (stronger) result is by Clarkson and Woodruff [119] (see Theorem 2.2),

where they show if Ω is a 4dlog(
√

(2)/δ)e-wise independent matrix, then Ω will satisfy

the JLT property. Recall that the SCM matrix Ω defined in eq. (7.1) will be a random

k-wise independent matrix if the dual distance of the code is > k. Thus, any error

correcting code matrix with a dual distance > 4 (more than 2 error correcting ability)

will satisfy the JLT property.

One of the important results related to JLT that is of interest for our theoretical

analysis is the matrix multiplication property. This is defined in the following lemma,

which is Theorem 2.8 in [28]. We can see similar results in Lemma 6 in [126] and

Theorem 2.2 in [119].

Lemma 5 For ε, δ ∈ (0, 1/2), let Ω be a random matrix (or from a distribution D) with

n rows that satisfies (ε, δ, d)-JLT property. Then for A,B matrices with n rows,

Pr
[
‖A>B −A>ΩΩ>B‖F ≤ 3ε‖A‖F ‖B‖F

]
≥ 1− δ. (7.5)
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We will see that the above lemma is one of the two main ingredients required to prove

(1 + ε) optimal error bound. The other ingredient is the subspace embedding property.

Subspace Embedding

One of the primary results developed in the randomized sampling algorithms literature

was establishing the relation between the Johnson-Lindenstrauss Transform (JLT) and

subspace embedding. The following lemma which is corollary 11 in [126] gives this

important relation.

Lemma 6 Let 0 < ε, δ < 1 and f be some function. If Ω ∈ Rn×` satisfies a JLT-(ε, δ, k)

with ` = O(k log(k/ε)/ε2.f(δ)), then for any orthonormal matrix V ∈ Rn×k, n ≥ k we

have

Pr(‖V >ΩΩ>V − I‖2 ≤ ε) ≥ 1− δ.

The above lemma shows that, any sampling matrix Ω satisfying JLT and having

length ` = O(k log(k/ε)/ε2) satisfies the subspace embedding property. Thus, any SCM

Ω with a dual distance > 4 will also satisfy the subspace embedding property (since

they satisfy JLT as we saw in the previous section). The subspace embedding property

implies that the singular values of V >Ω are bounded, i.e., V >Ω is well conditioned

with high probability. This result is critical since it shows that the SCM matrices can

preserve the geometry of the top k-singular vectors of the input matrix A.

Observe that with the above analysis, we will require ` = O(k log(k/ε)) number of

samples for the subspace embedding property to be satisfied, which is similar to a sub-

sampled Fourier or Hadamard matrix. Next, we show that for the subspace embedding

property to be satisfied, we will require only O(k/ε) number of samples for certain types

of code matrices.

We know that the code matrices display some of the properties of random matrices,

particularly when the distance of the code is high. Indeed a code with dual distance

above k supports k-wise independent probability measure and SCM Ω will be a random

matrix with k-wise independent rows. This property of SCM helps us use the following

lemma given in [119, Lemma 3.4] which states,

Lemma 7 Given an integer k and ε, δ > 0. If Ω ∈ Rn×` is ρ(k + log(1/δ))-wise

independent matrix with an absolute constant ρ > 1, then for any orthonormal matrix
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V ∈ Rn×k and ` = O(k log(1/δ)/ε), with probability at least 1− δ we have

‖V >ΩΩ>V − I‖2 ≤ ε.

Thus, a sampling SCM matrix Ω which is dk + log(1/δ)e-wise independent satisfies the

subspace embedding property with the number of samples (length) ` = O(k/ε). Hence,

an SCM Ω with dual distance > dk + log(1/δ)e will preserve the geometry of V with

` = O(k/ε).

In summary, any SCM with dual distance > 4 satisfies the JLT property, and will

satisfy the subspace embedding property if ` = O(k log(k/ε)). If the dual distance is

> k, then the SCM can preserve the geometry of V with ` = O(k/ε).

7.3.3 Deterministic Error bounds

In order to derive the bounds for the spectral norm error and the singular values ob-

tained, we will use the deterministic error bounds for Algorithm 6 developed in the liter-

ature [67, 127]. Algorithm 6 constructs an orthonormal basis Q for the range of Y , and

the goal is to quantify how well this basis captures the action of the input matrix A. Let

QQ> = PY , where PY is the unique orthogonal projector with range(PY ) = range(Y ).

If Y is full rank, we can express the projector as : PY = Y (Y >Y )−1Y >. We seek to

find an upper bound for the approximation error given by, for ξ ∈ {2, F}

‖A−QQ>A‖ξ = ‖(I − PY )A‖ξ.

The deterministic upper bound for the approximation error of Algorithm 6 is given in

[67]. We restate theorem 9.1 in [67] below:

Theorem 6 (Deterministic error bound) Let A be m×n matrix with singular value

decomposition given by A = UΣV >, and fixed k ≥ 0. Choose a test matrix Ω and

construct the sample matrix Y = AΩ. Partition Σ as in (7.2), and define Ω1 and

Ω2 via (7.3). Assuming that Ω1 is full row rank, the approximation error satisfies for

ξ ∈ {2, F}
‖(I − PY )A‖2ξ ≤ ‖Σ2‖2ξ + ‖Σ2Ω2Ω†1‖

2
ξ . (7.6)
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An elaborate proof for the above theorem can be found in [67]. Using the submulti-

plicative property of the spectral and Frobenius norms, and the Eckart-Young theorem

mentioned earlier, equation (7.6) can be simplified to

‖A−QQ>A‖ξ ≤ ‖A−Ak‖ξ
√

1 + ‖Ω2‖22‖Ω
†
1‖22. (7.7)

Recently, Ming Gu [127] developed deterministic lower bounds for the singular values

obtained from randomized algorithms, particularly for the power method [67]. Given

below is the modified version of Theorem 4.3 in [127] for Algorithm 6.

Theorem 7 (Deterministic singular value bounds) Let A = UΣV > be the SVD

of A, for a fixed k, and let V >Ω be partitioned as in (7.3). Assuming that Ω1 is full

row rank, then Algorithm 6 must satisfy for j = 1, . . . , k:

σj ≥ σj(Âk) ≥
σj√

1 + ‖Ω2‖22‖Ω
†
1‖22
(
σk+1

σj

)2
(7.8)

where σj are the jth singular value of A and Âk is the rank-k approximation obtained

by our algorithm.

The proof for the above theorem can be seen in [127]. In both the above theorems, the

key assumption is that Ω1 is full row rank. This is indeed true if the sampling matrix

Ω satisfies the subspace embedding property.

7.3.4 Error Bounds

The following theorem gives the approximation error bounds when the subsampled code

matrix (SCM) is used as the sampling matrix Ω. The upper and lower bounds for the

singular values obtained by the algorithm are also given.

Theorem 8 (Error bounds for code matrix) Let A be m× n matrix with singular

values σ1 ≥ σ2 ≥ σ3 ≥ . . .. Generate a subsampled code matrix Ω from a desired coding

scheme as in (7.1) with r ≥ dlog2(n)e as the dimension of the code. For any code matrix

Ω with dual distance > 4 and length ` = O(k log(k/ε)/ε2.f(δ)) the following three

bounds hold with probability at least 1− δ :
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1. The Frobenius norm error satisfies,

‖A− Âk‖F ≤ ‖A−Ak‖F (1 + ε). (7.9)

2. The spectral norm error satisfies,

‖A− Âk‖2 ≤ ‖A−Ak‖2

√
1 +

3n

`
. (7.10)

3. The singular values obtained satisfy:

σj ≥ σj(Âk) ≥
σj√

1 +
(

3n
`

) (σk+1

σj

)2
. (7.11)

If the code matrix Ω has dual distance ≥ dk + log(1/δ)e, then the above three bounds

hold for length ` = O(k log(1/δ)/ε).

Proof. [Proof - Frobenius norm Error] As we have been alluding to in the previous

sections, the (1 + ε) optimal Frobenius norm error given in eq. (7.9) is related to the

JLT and the subspace embedding properties. The following lemma gives this relation

which is Lemma 4.2 in Woodruff’s monograph [28].

Lemma 8 Let Ω satisfy the subspace embedding property for any fixed k-dimensional

subspace M with probability 9/10, so that ‖Ω>y‖22 = (1 ± 1/3)‖y‖22 for all y ∈ M .

Further, suppose Ω satisfies the (
√
ε/k, 9/10, k)-JLT property such that the conclusion

in Lemma 5 holds, i.e., for any matrices A,B each with n rows,

Pr
[
‖A>B −A>ΩΩ>B‖F ≤ 3

√
ε/k‖A‖F ‖B‖F

]
≥ 9/10.

Then the column space of AΩ contains a (1 + ε) rank-k approximation to A.

From the analysis in section 7.3.2 (in particular from Lemma 5 and 6), we know

that both the conditions in the above lemma are true for SCM with dual distance > 4

and length ` = O(k log(k/ε)/ε2.f(δ)), when appropriate ε and δ are chosen. Since

Âk = QQ>A, where Q is the orthonormal matrix spanning the column space of AΩ, we

obtain the Frobenius error bound in eq. (7.9) from the above lemma.
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Clarkson and Woodruff [119] gave the Frobenius norm error bound for low rank

approximation using k-wise independent sampling matrices. The error bound in (7.9) for

SCM with dual distance > k is straight from the following lemma which is a modification

of Theorem 4.2 in [119].

Lemma 9 If Ω ∈ Rn×` is a ρ(k+log(1/δ))-wise independent sampling matrix, then for

` = O(k log(1/δ)/ε), with probability at least 1− δ, we have

‖A− Âk‖F ≤ ‖A−Ak‖F (1 + ε). (7.12)

Proof of this lemma is clear from the proof of Theorem 4.2 in [119]. �

Proof. [Proof - Spectral norm Error] The proof of the approximate error bounds

given in (7.10) follows from the deterministic bounds given in sec. 7.3.3. We start from

equation (7.7) in Theorem 6, the terms that depend on the choice of the test matrix Ω

are ‖Ω2‖22 and ‖Ω†1‖22.

We know that the SCM Ω satisfies the subspace embedding property for the respec-

tive dual distances and lengths mentioned in the Theorem 8. This also ensures that the

spectral norm of Ω†1 is under control. We have the condition ‖V >k ΩΩ>Vk − I‖2 ≤ ε0,

implying
√

1− ε0 ≤ σk(V >k Ω) ≤ σ1(V >k Ω) ≤
√

1 + ε0.

Then from Lemma 3.6 in [121], we have

‖Ω†1‖
2
2 =

1

σ2
k(Ω1)

≤ 1

(1− ε0)
.

In Lemma 8, we chose ε0 = 1/3 to prove the (1 + ε) approximation. So, we have

‖Ω†1‖
2
2 ≤ 3/2.

Next, we bound the spectral norm of Ω2 as follows ‖Ω2‖22 = ‖V >2 Ω‖22 ≤ ‖V2‖22‖Ω‖22 =

‖Ω‖22 = σ2
1(Ω), since V2 is an orthonormal matrix. So, we need an upper bound on the

top singular value of SCM Ω, which we derive from the following two lemmas. The

first lemma shows that if a code has dual distance ≥ 3, the resulting code matrix Φ has

orthonormal columns.
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Lemma 10 (Code matrix with orthonormal columns) A code matrix Φ gener-

ated by a coding scheme which results in codes that have dual distance ≥ 3, has or-

thonormal columns.

Proof. If a code has dual distance 3, then the corresponding code matrix (stacked

up codewords as rows) is an orthogonal array of strength 2 [43]. This means all the

tuples of bits, i.e., {0, 0}, {0, 1}, {1, 0}, {1, 1}, appear with equal frequencies in any two

columns of the codeword matrix C. As a result, the Hamming distance between any

two columns of C is exactly 2r−1 (half the length of the column). This means after the

BPSK mapping, the inner product between any two codewords will be zero. It is easy

to see that the columns are unit norm as well. �

If there is no downsampling in Ω, then the singular values of Ω will simply be√
n/`, due to the scaling in (7.1) of the orthonormal matrix and since r = log2 n. If

we downsample the rows of Φ to form Ω, then the above fact helps us use Lemma 3.4

from [123] which shows that randomly sampling the rows of a matrix with orthonormal

columns results in a well-conditioned matrix, and gives bounds for the singular values.

The following lemma is a modification of Lemma 3.4 in [123].

Lemma 11 (Row sampling) Let Φ be a 2r×` code matrix with orthonormal columns

and let

M = 2r. max
j=1,...,2r

‖e>j Φ‖22.

For a positive parameter α, select the sample size

n ≥ αM log(`).

Draw a random subset T from {1, . . . , 2r} by sampling n coordinates without replace-

ment. Then √
(1− ν)n

2r
≤ σ`(STΦ) and σ1(STΦ) ≤

√
(1 + η)n

2r
(7.13)

with failure probability at most

`.

[
e−ν

(1− ν)(1−ν)

]α log(`)

+ `.

[
eη

(1 + η)(1+η)

]α log(`)

,
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where ν ∈ [0, 1) and η > 0.

The bounds on the singular values of the above lemma are proved in [123] using the

matrix Chernoff bounds.

Since n is fixed and M = ` for code matrices (all the entries of the matrix are

±2−r/2), we get the condition n ≥ α` log(`). So, α is less than the ratio n/` log(`) and

this ratio is typically more than 10 in the low rank approximation applications. For

α = 10, we choose ν = 0.6 and η = 1, then the failure probability is at most 2`−1.

Since we use the scaling
√

2r

` , the bounds on the singular values of the subsampled code

matrix Ω will be √
2n

5`
≤ σ`(Ω) and σ1(Ω) ≤

√
2n

`
. (7.14)

Thus, we obtain ‖Ω2‖22‖Ω
†
1‖22 = 3n/`. We substitute this value in (7.7) to get the

spectral norm error bounds in (7.10). �

Similarly, we obtain the bounds on the singular values given in (7.11) by substituting

the above value of ‖Ω2‖22‖Ω
†
1‖22 in (7.8) of Theorem 7.

We observe that the upper bounds for the spectral norm error obtained in (7.10) for

the SCM is similar to the bounds obtained for Gaussian random matrices and structured

random matrices like SRFT/SRHT given in the review article by Halko et.al [67]. For

the structured random matrices, (1 + ε) optimal Frobenius norm error has been derived

in [120]. We have a similar (1 + ε) optimal Frobenius norm error obtained for subsam-

pled code matrices with dual distance > 4 in (7.9). Importantly, we show that this

optimal error bound can be achieved with number of samples ` = O(k/ε) as opposed

to O(k log k/ε) required for structured random matrices when the dual distance of the

code is > k. Details on how to generate such code matrices with dual distance > k and

length ` = O(k/ε).

7.3.5 Least squares regression problem

In this section, we extend the framework to solve the least squares (`2) regression prob-

lem. As discussed in the introduction, the idea of randomized approximations is to

reduce the dimensions of A ∈ Rn×d and b ∈ Rn with n � d, by pre-multiplying them
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by a sampling matrix Ω ∈ Rn×`, and then to solve the smaller problem quickly,

min
x
‖Ω>Ax− Ω>b‖2. (7.15)

Let the optimal solution be x′ = (Ω>A)†Ω>b. Here we analyze the performance of SCM

as the sampling matrix Ω. We require the sampling matrix Ω to satisfy the JLT and

the subspace embedding properties, which are indeed satisfied by any SCM with dual

distance > 4. Hence, we can use the results developed by Sarlos [126], and Clarkson and

Woodruff [119] for our analysis. Similar to the earlier analysis, we can expect improved

performance when SCM with dual distance > k are used (k-wise independence property

of codes). For this, we use the bounds derived by Clarkson and Woodruff [119] for

random sign matrices. The following theorem which is a modification of Theorem 3.1

in [119] gives the upper bound for the regression problem in such cases.

Theorem 9 Given ε, δ > 0, suppose A ∈ Rn×d, b ∈ Rn and A has rank at most k. If Ω

is a ρ(k+ log(1/δ))-wise independent with an absolute constant ρ > 1, and x′ and x̂ are

solutions as defined before, then for ` = O(k log(1/δ)/ε), with probability at least 1− δ,

we have

‖Ax′ − b‖2 ≤ (1 + ε)‖Ax̂− b‖2.

This theorem shows that, if the code matrix is dk+log(1/δ)e-wise independent (i.e., dual

distance > dk+ log(1/δ)e), we can get ε−approximate solution for the regression prob-

lem with ` = O(k log(1/δ)/ε) samples. Thus, for the regression problem too, we have

the log k factor gain in the number of samples over other structured random matrices

(SRHT) given in [121, 120].

7.4 Choice of error correcting codes

7.4.1 Codes with dual-distance at least k + 1

The requirement of k-wise independence of codewords translates to the dual distance

of the code being greater than k. Since a smaller code (less number of codewords, i.e.,

smaller r) leads to less randomness in sampling, we would like to use the smallest code

with dual distance greater than k.
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One of the choices of the code can be the family of dual BCH codes. As mentioned

earlier, this family has length `, dimension t log(`+ 1) and dual distance at least 2t+ 1.

Hence, to guarantee dual distance at least k, the size of the code must be 2
k log(`+1)

2 =

(`+1)k/2. We can choose n vectors of length k log(`+1)
2 and form the codewords by simply

multiplying these with the generator matrix (over F2) to form the subsampled code

matrix. Therefore, forming these code matrices will be much faster than generating n×`
i.i.d Gaussian random matrices or random sign matrices which have k-wise independent

rows.

In general, from the Gilbert-Varshamov bound of coding theory [40], it is known that

linear codes of size ∼
∑k

i=0

(
`
i

)
exist that have length ` and dual distance greater than k.

The construction of these code families are still randomized. However, when k = O(`),

or the dual distance is linearly growing with the code length, the above construction of

dual BCH code does not hold in general. Infinite families of codes that have distance

proportional to the length are called asymptotically good codes. The Gilbert-Varshamov

bound implies that asymptotically good linear codes of size ∼ 2`h( k
`

) exist1, that have

length ` and dual distance greater than k.

7.4.2 Choice of the code matrices

Depending on the types of input matrices and the computational environments, we can

choose different types of code matrices that best suit the applications. If the input

matrix is a general dense matrix which can be stored in the fast memory (RAM), we

can choose any structured code matrix with dual distance > 4, r = dlog2 ne (or choose

message vectors to be 1 to 2dlog2 ne) and ` = O(k log k) (eg., dual BCH codes), so that the

fast multiplication technique can be exploited (the log factor will not be an issue). This

will be similar to using any other structured random matrices like SRFT or SRHT.

In fact, Hadamard matrices are also a class of linear codes, with variants known as

Hadamard codes, Simplex codes or 1st-order Reed-Muller codes. The dual distance of

Hadamard code is 3. However, with code matrices (say dual BCH codes), subsampling

of columns is not required, thus reducing randomness and cost.

If the input matrix is sparse and/or is distributively stored, and for parallel imple-

mentation, we can choose a code matrix with dual distance > k and generate them as

1h(x) ≡ −x log2 x− (1− x) log2(1− x) is the binary entropy function



121

Table 7.1: Classes of sampling matrices with subspace embedding properties

Matrix Classes ` Runtime Randomness
Gaussian (or random sign) O(k/ε2) O(mn`) n`
SRFT/SRHT [123, 120] O(k log(kn) log(k/ε2)/ε2) O(mn log `) Θ(n)
Count Sketch [28] (k2 + k)/ε2 O(nnz(A)) n
Code matrix (dual distance≥ 4) O(k log(k/ε)/ε2) O(mn log `) n
Code matrix (dual distance≥ k) O(k/ε2) O(mn log `) Θ(n)

mentioned earlier. These code matrices are not structured and we can treat them as

dense transforms (any random matrices). For SRFT/SRHT sampling matrices, we need

to communicate O(k log k) columns, but for code matrices with dual distance > k, the

log factor is not necessary. This will help us overcome the issues with SRFT/SRHT for

sparse input matrices and in parallel and distributed applications. These code matrices

are easy to generate (than i.i.d Gaussian random matrices), the log factor in the num-

ber of samples is not necessary, and thus, using code matrices in these applications will

reduce randomness and cost significantly. When using code matrices, we also have com-

putations gains in the cost of generating the sampling matrices, since the code matrices

are deterministic, and also require lower number of random numbers to be generated.

Summary of the classes of sampling matrices We summarize in Table 7.1 a list of

some of the classes of optimal sampling matrices which satisfy the subspace embedding

property. The table lists the sampling complexity ` required for achieving the (1 + ε)

optimal bounds and the runtime cost for computing the matrix product Y = AΩ.

The table also lists the amount of random numbers (randomness) required for each of

sampling matrices. A comprehensive list with systematic description of these and more

classes of sampling matrices, expect the last two classes can be found in [122].

7.5 Numerical Experiments

Now, we illustrate the performance of subsampled code matrices as sampling matri-

ces. We compare the performance of dual BCH code matrices against the performance

of random Gaussian matrices and subsampled Fourier transform (SRFT) matrices for

different input matrices from various applications.
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Figure 7.1: (Left) Randomized SVD using dual BCH code, Gaussian, SRFT and SRHT
matrices as sampling matrix for input matrix Kohonen.

Our first experiment is with a 4770 × 4770 matrix named Kohonen from the Pa-

jek network (a directed graph’s matrix representation), available from the SuiteSparse

Matrix Collection [66]. Such graph Laplacian matrices are commonly encountered in

machine learning and image processing applications. The performance of the dual BCH

code matrix, Gaussian matrix, subsampled Fourier transform (SRFT) and Hadamard

(SRHT) matrices are compared as sampling matrices Ω. For SRHT, we have to sub-

sample the rows as well (similar to code matrices) since the input size is not a power of

2. All experiments were implemented in matlab v8.1, on an Intel I-5 3.6GHz processor.

Figure 7.1(Left) gives the actual error e` = ‖A − Q(`)(Q(`))>A‖ for each ` number

of samples when a subsampled dual BCH code matrix, a Gaussian matrix, SRFT and

SRHT matrices are used as sampling matrices, respectively. The best rank-` approxi-

mation error σ`+1 is also given. Figure 7.1(Right) plots the singular values obtained,

for ` = 255 and different sampling matrices Ω used. The top 255 exact singular values

of the matrix are also plotted. We observe that, in practice, the performance of all four

sampling matrices are similar.

Table 7.2 compares the errors e` for ` number of samples, obtained for a variety of in-

put matrices from different applications when subsampled dual BCH code, Gaussian and

SRFT matrices were used. All matrices were obtained from SuiteSparse database [66].

Matrices lpi ceria3d and deter3 are from linear programming problems. S80PI n1 and

dw4096 are from an eigenvalue/model reduction problem. Delaunay, EPA, ukerbe1, FA

(network) and Kohonen are graph Laplacian matrices. qpband is from an optimization

problem. The table depicts two sets of experiments (divided by the line). The first set
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Table 7.2: Comparison of errors

Dual BCH Gaussian SRFT
Matrices Sizes ` Error Error Error
lpiceria3d 4400× 3576 63 16.61 17.55 17.32
Delaunay 4096× 4096 63 6.386 6.398 6.383
deter3 21777× 7647 127 9.260 9.266 9.298
EPA 4772× 4772 255 5.552 5.587 5.409
Kohonen 4770× 4770 511 4.297 4.294 4.261
ukerbe1 5981× 5981 127 3.093 3.0945 3.092
dw4096 8192× 8192 127 108.96 108.93 108.98
FA 10617× 10617 127 2.19 2.17 2.16
qpband 20000× 20000 63 4.29 4.30 4.26

(top five examples) illustrates how errors vary as the sample size ` is increased. The sec-

ond set (bottom four) illustrates how the errors vary as the size of the matrix increases.

For the last matrix (qpband) we could compute the decomposition for only ` = 63 due

to memory restrictions. We observe that, for small `, in the first five examples the

error performance of code matrices is slightly better than that of Gaussian matrices.

For higher `, the error remains similar to the error for Gaussian matrices. All input

matrices are sparse, hence we cannot use the fast transforms. We still see that code

matrices take less time than both Gaussian and SRFT. In practice, we can use code

matrices in place of fully random (Gaussian) matrices or structured random matrices

due to the advantages of code matrices over the other sampling matrices, as discussed

in the previous sections.



Chapter 8

Group testing with codes

8.1 Introduction

The group testing problem involves efficient identification of a small number k of defec-

tive elements in population of a large size n [128]. The idea is to test the elements in

groups with the premise that most tests will return negative results, clearing the entire

group. If the test result is positive, then the group contains at least one defective. The

collection of tests is said to form a group testing scheme if the outcomes of the tests

enable us to identify any small subset of defectives of size say k.

A nonadaptive group testing scheme with m tests is typically described by an m×n
binary incidence matrix A, where each row corresponds to a test, and Aij = 1 if and

only if the ith test includes the jth element. The result of the test is positive if the

indices of ones in the row overlap with the indices of the defective configuration. The

smallest possible number of tests is known to satisfy m = Θ( k2

log k log n) [128].

A construction of group testing schemes using matrices of error-correcting codes

and code concatenation appeared in the foundational paper by Kautz and Singleton

[129]. Many later constructions of group testing schemes also rely on codes and code

concatenations [130, 131]. Other explicit constructions of non-adaptive group testing

schemes with m = O(k2 log n) are also suggested, see [128]. In order to improve the

tradeoff between the parameters of the scheme, construction of schemes that permit a

small probability of error (false positives) is suggested. Such schemes were considered

under the name of weakly separated designs in [132].With this relaxation, it is possible to

124
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reduce the number of tests to Θ(k log n) [133]. An explicit (non-probabilistic) construc-

tion of almost disjunct matrices with the number of tests proportional to k3/2
√

log n was

presented in [134] and was subsequently improved to k log2 n/ log k in [133]. The con-

struction of [129] and many others above are based on constant weight error-correcting

codes. Estimates of the parameters of the group testing schemes from constant weight

codes were obtained using the minimum distance of the code [129] and more recently

using the average distance [134, 133].

In this chapter, we perform experiments with test matrices constructed from the

codewords of a fixed (low) weight in binary BCH codes. The resulting matrices are

sparse in the sense that most of their entries are zero. We show that these matrices

perform extremely well in experiments, outperforming random matrices. We also give

some theoretical justification for this construction. Sharpening the estimates of the

error probability is currently an open problem.

We derive an estimate of the probability of false positive that is based on the dual

distance d′ of constant weight codes. Constant weight codes with a given d′ are known

as combinatorial designs (of strength d′ − 1). A design of strength t (an t-design, or,

in more detail, an t-(n,w, λ) design) is a collection of w-subsets of an n-set V , called

blocks, such that every r elements of V are contained in the same number λ of blocks.

The use of t-designs for constructing disjunct matrices is not new, see, [128, §7.4].

8.2 Definitions and Notation

Definition 3 An m × n binary matrix A is called k-disjunct if the support1 of any of

its columns is not contained in the union of the supports of any other k columns.

A k-disjunct matrix gives a group testing scheme that identifies any defective set

up to size k. Conversely, any group testing scheme that identifies any defective set

up to size k must be a (k − 1)-disjunct matrix [128]. Disjunct matrices support a

simple identification algorithm that runs in time O(nk). Note that, any element that

participates in a test with a negative outcome is not defective. After we perform all the

tests and weed out all the non-defective elements from negative tests, the disjunctness

1The support of a vector x ∈ Fnq is the set supp(x) := {i : xi 6= 0}.
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property of the matrix guarantees that all the remaining elements are defective.

Definition 4 For any ε > 0, an m× n matrix A with columns a1, a2, . . . , aN , is called

k-disjunct(ε) if Pr({I ∈
([n]
k

)
, j ∈ [n] \ I | supp(aj)⊆

⋃
t∈I

supp(at)}) ≤ ε.

The union of supports of a randomly and uniformly chosen subset of k columns of

a k-disjunct(ε) matrix does not contain the support of any other random column with

probability at least 1− ε. The next fact follows from the definition of disjunct matrices

and the decoding procedure [128, p. 134].

Proposition 2 A k-disjunct(ε) matrix defines a group testing scheme that can identify

all items in a random defective configuration of size k and with probability ε identifies any

randomly chosen item outside of the defective configuration as defective (false-positive).

A code of length m is a subset of the vector space Fmq . The minimum Hamming

distance between distinct codewords of C is called the distance of the code. We use the

notation C(m,n, d) to refer to the code of length m, cardinality n and distance d. If in

addition all the codevectors of the code C contain exactly w nonzero entries, we call it

a constant weight code and use the notation C(m,n, d, w). Finally we refer to a linear

code of length m and dimension r as an [m, r] code.

8.3 Numerical Experiments

This work is motivated in part by the experimental results which show that matrices

formed of codewords of a fixed weight obtained from binary codes perform very well

in the group testing problem for identifying defective entries. Here, we present a few

simulation results using matrices formed by codewords of fixed weight obtained from

different BCH codes, and compare their performance with best possible randomly gen-

erated sparse matrices.

The results are presented in Fig. 8.1. Each of the eight plots in Fig. 8.1 presents

results of identification of defectives for two group testing schemes, one using a matrix

formed of the fixed-weight codewords of the BCH code and the other using a random

binary matrix. The experiments were organized as follows. For instance, for the first
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Figure 8.1: Number of false positives with fixed-weight BCH codeword matrices and
sparse random matrices, averaged over 300 trials.

plot (top left corner) we formed a test matrix A by using the codewords of weight

w = 6 in the [m = 31, r = 21] BCH code as its columns. There are n = 806 such

codewords in the code, which enables us to construct a 31 × 806 test matrix. This

means that we can test a set of n = 806 items for the presence of defectives using

m = 31 tests. To compare this construction with the scheme based on random matrices,

we constructed a sparse random matrix assigning the entries independently to 0 or 1

with probability of 1 equal to p̃ = 1/(k + 1) and 0 with probability 1 − p̃. It is known

(and also experimentally verified) that p̃ = 1/(k+ 1) gives the best performance among

such random matrices [128]. Each experiment consisted of generating a random vector

with k defectives randomly inserted among n items and performing the identification

procedure. This experiment is repeated 300 times; then we compute the average number

of false positives found by the two group testing schemes.

Similar experiments were performed for the other group testing schemes shown in

Fig. 8.1. In the second plot, we used a [63, 57]-BCH codeword matrix with constant

weight w = 3, n = 651 and m = 63, i.e., the matrix formed by the codewords of weight

3 of the Hamming code of length 63 (they are known to support a 2-design). Other

examples are similar (the values of (m,n,w) are as reported in the plots).

We note that the fixed-weight BCH codeword matrices consistently in most cases

perform much better than sparse random matrices in terms of the number of false
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Figure 8.2: Two group testing examples.

positives detected, and the gap widens (in most cases) with the increase of the number

of defectives.

To exemplify this improvement, we show in Fig. 8.2 two individual experiments

performed for fixed-weight BCH testing matrices used to generate Fig. 8.1, namely, the

matrices with the parameters n = 1890,m = 63, w = 5 and n = 16002,m = 127, w = 5.

In the left column in Fig. 8.2 we show the locations of the actual defective elements

inserted in the population and the defective vectors identified by the BCH-based matrix

(middle plot) and the random matrix (bottom plot) for the first set of parameters. We

see that the BCH matrix locates the defectives exactly while the random matrix inserts

a large number of false positives compared to the actual number k = 4. In the right

column of the plot we show similar results for an individual experiment for the second

set of parameters. Here the BCH matrix-based scheme inserts a few false defectives,

while the random matrix adds many more.

8.4 Estimates of error probability

In this section we cite some known, and present some new results on constant weight

codes with which we attempt to explain the observed performance of constant weight

almost disjunct matrices. The following well-known result of [129] has been the basis of

a large number of construction of testing matrices.
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Proposition 3 An (m,n, d, w) constant weight binary code C provides a k-disjunct ma-

trix, where k =
⌊
w−1
w−d/2

⌋
.

This proposition implies that a group testing scheme can be obtained from constant

weight codes with large distance. However, the set of codewords of weight 5 in a

[63, 51] BCH code forms a (63, 1890, 3, 5) constant weight code with distance d = 5,

so Proposition 3 clearly fails to explain the performance of the group testing scheme

obtained from this code.

Extending the theory of Kautz-Singleton to almost-disjunct matrices, [133] provides

a bound on the false-positive probability of a constant weight code matrix in terms of

its distance distribution. Define the average distance D of a code C:

D(C) =
1

|C|
min
x∈C

∑
y∈C

dH(x, y).

Here dH denotes the Hamming distance. Define also the second-moment of the distance

distribution as follows:

D2(C) =
1

|C|2
∑
x,y∈C

dH(x,y)2.

One of the main results of [133] is the following theorem.

Theorem 10 Let C be a constant weight binary code C of size n, minimum distance d

and average distance D such that every codeword has length m and weight w. The test

matrix obtained from the code is k-disjunct(ε) for the largest k such that the inequality

d ≥ D − 3(w − k(w −D/2))2

(ln 1/ε)(2k(w −D/2) + w)

holds true.

Paper [133] also provides a more refined estimate that relies on the second moment

of the distance distribution.

Theorem 11 Let C be a constant-weight (m,N, d, w) binary code with average distance

D and the second moment of the distance distribution D2. The test matrix obtained
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Table 8.1: Minimum distance and average distance
Parameters d = dmin D = davg D2

m = 31, w = 6 6 9.6894 96.7742
m = 63, w = 3 4 5.7231 33.1797
m = 63, w = 5 6 9.2112 86.1239
m = 63, w = 7 8 12.4481 157.3620
m = 63, w = 9 10 15.4357 241.8802
m = 127, w = 3 4 5.8605 34.5917
m = 127, w = 5 6 9.6050 93.0134

Table 8.2: Estimates of the error probability ε from Theorem 10
Parameters k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

m = 31, w = 6 0.101 0.354 0.671 0.906 0.998 0.963 0.848 0.699 0.550 0.416
m = 63, w = 3 0.013 0.026 0.048 0.080 0.122 0.175 0.238 0.308 0.384 0.463
m = 63, w = 5 0.032 0.080 0.157 0.261 0.384 0.514 0.642 0.756 0.851 0.923
m = 63, w = 7 0.047 0.138 0.284 0.463 0.644 0.800 0.914 0.980 1.000 0.981
m = 63, w = 9 0.058 0.197 0.414 0.649 0.842 0.961 1.000 0.972 0.896 0.794
m = 127, w = 3 0.012 0.017 0.025 0.035 0.046 0.061 0.078 0.097 0.119 0.143
m = 127, w = 5 0.028 0.047 0.073 0.106 0.146 0.193 0.246 0.303 0.364 0.427

Table 8.3: Estimates of the error probability ε from Theorem 11
Parameters k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

m = 31, w = 6 0.043 0.164 0.431 0.781 0.993 0.896 0.578 0.271 0.093 0.023
m = 63, w = 3 0.012 0.026 0.048 0.079 0.120 0.172 0.233 0.302 0.377 0.454
m = 63, w = 5 0.022 0.048 0.091 0.158 0.249 0.362 0.493 0.628 0.758 0.867
m = 63, w = 7 0.024 0.060 0.130 0.246 0.410 0.607 0.802 0.945 1.000 0.951
m = 63, w = 9 0.024 0.072 0.181 0.376 0.641 0.891 1.000 0.895 0.632 0.347
m = 127, w = 3 0.012 0.018 0.025 0.035 0.046 0.060 0.077 0.096 0.118 0.142
m = 127, w = 5 0.023 0.033 0.048 0.066 0.089 0.116 0.150 0.189 0.234 0.285

from the code is k-disjunct(ε) for the largest k such that the inequality

d ≥ D +
3t(D2 −D2)

2(w − t(w −D/2))
− 3(w − t(w −D/2))

ln 1/ε
(8.1)

holds true.

In order to compute the estimates based on these theorems, we computed the dis-

tance distributions of a number of constant weight codes obtained from low-weight

codewords of the BCH codes of length 63 and 127 mentioned above, and found D and

D2 for these codes. The results are listed in Table 8.1. Using these values, we can

find the estimates of the error probability ε given by Theorems 10 and 11. The results



131

are summarized in Tables 8.2 and 8.3, respectively. Although they represent a large

improvement over the initial estimates of Kautz-Singleton, they still do not match the

performance in actual experiments. For example, with codewords of weight 5 in a BCH

code of length 127, even with 3 defectives the predicted false positive probability is

0.0479, whereas the number of false positives in the experiments is close to zero.

Next we will show that better estimates can be achieved in many cases. To formulate

the result we need to define the dual distance of a constant weight code. The distance

distribution of a constant weight code C(m,n, d, w) is a set of numbers b0, b1, . . . , bw,

where

bi =
1

|C|
|{(x, y) ∈ C2 : w − | supp(x) ∩ supp(y)| = i}| (8.2)

for i = 0, 1, . . . , w. Note that b0 = 1. The dual distance d′ of C is defined as

d′(C) = min
{
j ≥ 1 : b′j :=

1

|C|

w∑
i=0

biQj(i) > 0
}
,

where Qj(i) is the value of the Hahn polynomial of degree j; see [128].

Now we are ready to state the main theorem in our analysis.

Theorem 12 Let C be an (m,n, d, w) constant weight code with dual distance d′ and let

w < m/2. Let k be the maximum number of defective items and suppose that k < m/w.

For any even ` < d′ the probability of a false positive test result for the group testing

scheme constructed from C is bounded above as

ε ≤ B(`, k)
( e`(m− w)

2(m− kw)2

)`/2 `/2∑
i=0

((m− w)`

2ew2

)i
, (8.3)

where B(`, k) = min{(18`k)`/2, k`}. In addition, if m ≥ max{4w2k/`2, w + 2ew2/`},
then

ε ≤ k
( 2`2(m− w)

(log `)w(m− kw)

)`
. (8.4)

In the case of ` = 2 we have

ε <
k

m− 1

(m− w)2

(m− wk)2
. (8.5)



132

Table 8.4: Estimates of the error probability ε from (8.5), Thm. 12

Parameters k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

m = 63, w = 3 0.016 0.036 0.060 0.089 0.126 0.172 0.230 0.305 0.403 0.533
m = 63, w = 5 0.016 0.039 0.070 0.117 0.188 0.299 0.484 – – –
m = 63, w = 7 0.016 0.042 0.086 0.165 0.322 0.688 – – – –
m = 127, w = 3 0.008 0.017 0.026 0.037 0.049 0.062 0.076 0.092 0.110 0.130
m = 127, w = 5 0.008 0.017 0.028 0.041 0.057 0.075 0.098 0.125 0.158 0.199
m = 127, w = 7 0.008 0.018 0.030 0.046 0.067 0.095 0.131 0.181 0.251 0.352

Proof: (outline) The ideas of the proof are as follows. First we show that as long as

t < d′, the tth central moment of the distance distribution of the code equals the tth mo-

ment of the hypergeometric random variable with the pmf fX(i) =
(
w
i

)(
m−w
w−i

)
/
(
m
w

)
, i =

0, 1, . . . , w. This fact relies on simple properties of the Johnson association scheme. After

that we use a condition similar to w > k(w−d/2) (see the proof of Prop. 3) as sufficient

for identification and write a Chernov-type bound that it is violated, where the random

variables are the indices of k random columns of the matrix A. This gives the estimate

of ε in the form of the tth moment of a sum of certain independent random variables

which can be bounded above using classical inequalities such the Rosenthal inequalities

or other similar estimates. The full development of these arguments is rather long; see

[135].

Using this information together with Theorem 12, we can compute upper bounds

for the false-positive probabilities obtained from Eq. (8.5) for the various fixed-weight

BCH codeword matrix examples given in Fig. 8.1. The results are listed in Table 8.42.

We can see that the bounds are small, especially for smaller k, even when we have ` = 2.

Compared to all previous results, this gives better estimates of ε.

2 ‘-’ in the table means that the computed estimate is trivial.



Chapter 9

Multilabel classification with

group testing and codes

9.1 Introduction

In the multilabel classification problem, we are given a set of labeled training data

{(xi, yi)}ni=1, where xi ∈ Rp are the input features for each data instances and yi ∈
{0, 1}d are vectors indicating the corresponding labels (classes) the data instances belong

to. The vector yi has a one in the jth coordinate if the ith data point belongs to

jth class. We wish to learn a mapping (prediction rule) between the features and

the labels, such that, we can predict the class label vector y of a new data point x

correctly. Such multilabel classification problems occur in many domains such as text

mining, computer vision, music, and bioinformatics, and modern applications involve

large number of labels. Popular applications with many labels include image and video

annotation [136], web page categorization [137], text and document categorization [138],

and others [139]. In most of these applications, the label vectors yi are sparse (with

average sparsity of k � d), i.e., each data point belongs to a few (average k out of

d) classes. The multiclass classification is an instance of the multilabel classification,

where all data points belong to only one of the d classes (k = 1).

The simple binary classification problem, where d = 2 and k = 1 is well-studied, and

several efficient algorithms have been proposed in the literature. A natural approach

used to solve the multiclass (d > 2, k = 1) classification problem is to reduce the problem

133
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into a set of binary classification problem, and then employ the efficient binary classifiers

to solve the individual problems. Popular methods based on this approach are: one-vs-

all, all-pairs, and the error-correcting output code (ECOC) [140] methods. In ECOC

method, m-dimensional binary vectors (typically codewords from an error correcting

code with m ≤ d) are assigned to each class, and m binary classifiers are learned. For

the jth classification, the jth coordinate of the corresponding codeword is used as the

binary label for each class. In the modern applications, where d is typically very large,

this approach is found to be very efficient due to the reduction of the class dimension.

Related Work: The idea of ECOC approach has been extended to the multilabel

classification (MLC) problem. In the multiclass classification, using codewords for each

class in ECOC is equivalent to multiplying the code matrix to the label vectors (since

the label vectors are basis vectors). In the multilabel setting, the d dimensional label

vectors are reduced to m dimensional by multiplying a random matrix A ∈ Rm×d to the

label vector y. This reduction method was analyzed from the compressed sensing point

of view in [141], with the assumption of output sparsity, i.e., y is sparse (with average

sparsity k). Using compressed sensing (CS) theory, the results in [141] show that for a

linear hypothesis class and under the squared loss, a random embedding (random code

matrix) of the classes to m = O(k log d) dimensions does not increase the L2 risk of

the classifier. However, the CS approach requires solving an optimization problem to

recover the label vector. Constructions with faster recovery algorithms exist but we

cannot obtain L2 norm results with them.

Alternatively, embedding based approaches have been proposed to reduce the effec-

tive number of labels. These methods reduce the label dimension by projecting label

vectors onto a low dimensional space, based on the assumption that the label matrix

Y = [y1, . . . , yn] is low-rank. The various embedding methods proposed in the literature

mainly differ in the way this reduction is achieved. The reduction is achieved using

SVD in [107], while column subset selection is used in [108]. These embedding methods

capture the label correlation, and Euclidean distance error guarantees are established.

However, the low rank assumption breaks down in many situations [139], e.g., data is

power law distributed [142].

The state of the art embedding method called SLEEC (Sparse Local Embedding for
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Extreme Classification) [139] overcomes the limitations of previous embedding methods

by first clustering the data into smaller regions, and then performs local embeddings of

label vectors by preserving distances to nearest label vectors. However, this method also

has many shortcomings, see [142]. Moreover, most of these embedding based methods

are very expensive. They involve eigenvalue or singular value decompositions and matrix

inversions, and may require solving convex optimization problems, all of which become

impractical for very large d. In all the embedding methods and the CS method, the

reduced label space is a real space (no longer binary). Hence we need to use regressors

for training and cannot leverage the efficient binary classifiers for effective training for

the model. Prediction will also involve rounding/thresholding of real values. This is

additional work, and choosing a right threshold is sometimes problematic.

Contributions: In this chapter, we present a novel reduction approach to solve the

MLC problem. Our approach assumes output sparsity (sparse label vectors with k � d)

similar to the CS approach, but reduces a large binary label vector to a binary vector of

smaller size. Since the reduced label vectors are binary, we can use the efficient binary

classifiers for effective training for the model. Our prediction algorithm is extremely

simple and does not involve any matrix inversion or solving optimization algorithm.

The prediction algorithm can also detect and correct errors.

We make the crucial observation that, the MLC problem can be solved using the

group testing (GT) premise. That is, the problem of estimating the (few) classes of a

data instance from a large set of classes, is similar to identifying a small set of items from

a large set. We consider a group testing binary matrix A and reduce the label vectors

yi’s to smaller binary vectors zi using the boolean OR operation zi = A ∨ yi (described

later). We can now use binary classifiers on zi for training. The m classifiers learn to

test whether the data belongs to a group (of labels) or not. During prediction, the label

vector can be recovered from the predictions of the classifiers using a simple inexpensive

algorithm (requiring no matrix inversion or solving optimization algorithms). A low

prediction cost is extremely desirable in real time applications.

The idea of grouping the labels helps overcome the issues most existing methods

encounter; e.g., when the data has power law distribution [142], that is many labels

have very few training instances (which is the case in most popular datasets), and tail
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labels. Since the classifiers in our approach learn to test for groups of labels, we will

have more training instances per group yielding effective classifiers. It is well known

that the one-vs-rest is a highly effective method (expensive), and recently a (doubly)

parallelized version of this method called DiSMEC [142] was shown to be very effective.

Our approach is similar to one-vs-rest, but the classifiers test for a group of labels, and

we require very few classifiers (O(log d) instead of d).

We establish Hamming loss error bounds for the proposed approach. Due to the

error correcting capabilities of the algorithm, even if a fraction of classifiers mis-classify,

we can achieve zero prediction error. Numerical experiments with various datasets

illustrate the superior performance of our group testing approach with different GT

matrices. Our method is extremely inexpensive compared to the CS approach and

especially compared to the embedding based methods, making it very desirable for real

time applications too.

9.2 MLC via Group testing

Preliminaries: Recall the group testing problem and the testing schemes we dis-

cussed in the previous chapter. We know that a k-disjunct matrix gives a group testing

scheme that identifies any defective set up to size k exactly. Next, we have the following

important definition.

Definition 5 (Error Correction) An m×d binary matrix A is called (k, e)-disjunct,

e ≥ 1, (k-disjunct and e-error detecting) if for every set S of columns of A with |S| ≤ k,

and i /∈ S, we have | supp(A(i))\∪j∈S supp(A(j))| > e, where A(i) denote the ith column

of A.

A (k, e)-disjunct matrix can detect up to e errors in the measurements and can

correct up to be/2c errors. This property is stronger than k-disjunct and k-disjunct(ε)

properties (not to be confused with the latter).

Several random and deterministic constructions of k-disjunct matrices have been

proposed in the literature [129, 128], some of which we discussed in the previous chapter.

Matrices from error correcting codes and expander graphs have also been designed,

which we will discuss later.
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Algorithm 7 MLGT Training

Input: Training data {(xi, yi)}ni=1,

group testing matrix A ∈ Rm×d, a bi-

nary classifier algorithm C.
Output: m classifiers {wj}mj=1.

for i = 1, . . . , n. do

zi = A ∨ yi.
end for

for j = 1, . . . ,m. do

wj = C({(xi, zij)}ni=1).

end for

Algorithm 8 MLGT Prediction

Input: Test data x ∈ Rp, the group

testing matrix A ∈ Rm×d which is (k, e)-

disjunct, m classifiers {wj}mj=1.

Output: predicted label ŷ.

Compute ẑ = [w1(x), . . . , wm(x)].

Set ŷ ← 0.

for l = 1, . . . , d do

if |A(l)\ẑ| < e/2 then

ŷl = 1.

end if

end for
Now, we present our main idea of adapting the group testing scheme to the multilabel

classification problem (MLGT).

Training. Suppose we are given n training instances {(xi, yi)}ni=1, where xi ∈ Rp are

the input features for each instances and yi ∈ {0, 1}d are corresponding label vectors.

We begin by assuming that each data instance belongs to at most k classes (the label

vector y is k sparse). We consider a (k, e)-disjunct matrix A ∈ Rm×d. We then compute

the reduced measured (label) vectors zi for each label vectors yi, i = 1, . . . , n using the

boolean OR operation zi = A∨yi. We can now train m binary classifiers {wj}mj=1 based

on {xi, zi}ni=1 with jth entry of zi indicating which class (1/0) the ith instance belongs

to for the jth classifier. Algorithm 7 summarizes our training algorithm.

Prediction. In the prediction stage, given a test data x ∈ Rp, we use the m classifiers

{wj}mj=1 to obtain a predicted reduced label vector ẑ. We know that a k sparse label

vector can be recovered exactly, if the group testing matrix A is a k-disjunct matrix.

With a (k, e)-disjunct matrix, e ≥ 1, we can recover the k sparse label vector exactly,

even if be/2c binary classifiers mis-classify, using the following decoder.
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Decoder : Given a predicted reduced label vector ẑ, and a group testing matrix

A, set the coordinate position of ŷ corresponding to l ∈ [1, . . . , d] to 1 if and only if

| supp(A(l))\ supp(ẑ)| < e/2.

That is, we set the lth coordinate of ŷ to 1, if the number of coordinates that are

in the support of the corresponding column A(l) but are not in the predicted reduced

vector ẑ, is less than e/2. The decoder returns the exact label vector even if up to e/2

binary classifiers make errors. Algorithm 8 summarizes our prediction algorithm.

Note that the prediction algorithm is very inexpensive (requires no matrix inversion

or solving optimization). It is equivalent to an AND operation between a binary sparse

matrix and a binary (likely sparse) vector, which should cost less than a sparse matrix

vector product O(nnz(A)) ≈ o(kd), where nnz(A) is the number of nonzero entries of

A. It is an interesting future work to design an even faster prediction algorithm.

9.3 Constructions

In order to recover a k sparse label vector exactly, we know that the group testing matrix

A must be a k-disjunct matrix. With a (k, e)-disjunct matrix, our algorithm can extract

the sparse label vector exactly even if e/2 binary classifiers make errors (mis-classify).

Here, we present the results that will help us construct specific GT matrices with the

desired properties.

9.3.1 Random Constructions

Proposition 4 (Random Construction) An m× d random binary {0, 1} matrix A

where each entry is 1 with probability ρ = 1
k+1 , is (k, 3k log d)-disjunct with very high

probability, if m = O(k2 log d).

If we tolerate a small ε fraction of sparsity label misclassifications (i.e., εk errors in the

recovered label vector), which we call ε-tolerance group testing (recall the k-disjunct(ε)

property), then we can follow the analysis of Theorem 8.1.1 in [128], to show that it

is sufficient to have m = O(k log d) number of classifiers. Further, we can derive the

following result.
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Theorem 13 Suppose we wish to recover a k sparse binary vector y ∈ Rd. A random

binary {0, 1} matrix A where each entry is 1 with probability ρ = 1/k recovers 1 − ε
proportion of the support of y correctly with high probability, for any ε > 0, with m =

O(k log d). This matrix will also detect e = Ω(m) errors.

The proofs of the above proposition and theorem can be found in [10].

9.3.2 Concatenated code based constructions

Kautz and Singleton [129] introduced a two-level construction in which a q-ary ( q > 2)

Reed-Solomon (RS) code is concatenated with a unit-weight binary code. The construc-

tion starts with a q-ary ( q > 2) RS code of length q−1, and replaces the q-ary symbols

in the codewords by unit weight binary vectors of length q. That is, the q-ary symbols

are replaced as 0 → 100 . . . 0; 1 → 010 . . . 0; q − 1 → 0 . . . 01. This gives us a binary

matrix with m = q(q− 1) rows. This matrix belongs to a broad class of error correcting

codes called the constant weight codes (each codeword/column has a constant number

of ones w). For this Kautz-Singleton construction, w = q − 1.

Proposition 5 (Kautz-Singleton construction) A Kautz-Singleton construction with

(k logk d)-ary Reed-Solomon (RS) code is a (k, (k − 1) logk d)-disjunct matrix with m =

Θ(k2 log2
k d).

Proof. A constant weight code matrix is k disjunct matrix with k = b w−1
w−h/2c,

where w is the weight and h is the distance of the code, (see, Theorem 7.3.3 in [128]).

The distance of the q-ary RS code is h = 2(q − logq(d)). Hence, we get k = q−2
logq d−1 .

So, for a k-disjunct matrix, we choose q = k logk d. A code with distance h will have

e = h/2 (by using Corollary 8.3.2 in [128]). Thus, e = q − logq d ≈ (k − 1) logk d.

m = q(q − 1) = Θ(k2 log2
k d). �

Many code based constructions have been proposed with the optimal length of

m = Θ(k2 logk d) [143]. One such code based construction of interest is the Algebraic-

Geometric codes. Considering q = r2, where r is an integer, we can generate a family of

Algebraic-Geometric (AG) codes of length mq, satisfying mq ≥ ra+1 − ra + 1, where a

is an even integer. Using the Kautz-Singleton mechanism, we can convert this AG code
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to a binary code that has constant weight w = mq. The length of the binary code will

be m = qmq.

Proposition 6 We can construct an Algebraic-Geometric code matrix that recovers 1−
ε proportion of nonzeros in y with high probability, for ε > 0, with m ≥ 16k log2k d log(d/ε).

This matrix will also detect e =
(

8 log(d/ε)− 8 log(d/ε)√
2k−1

− 1
)

log2k d errors.

Proof. The proof follows from the results developed in [143]. For a q-ary Algebraic-

Geometric Code with q ≥ 2k, that is converted to a binary code using Kautz-Singleton

mechanism, we have the 1 − ε recovery guarantees for m ≥ 16k log d
log 2k log(d/ε). We know

if the code has a distance h, then e = h/2. The q-ary AG code satisfies

h ≥ 2m/q − 2 logq d−
2m

q(
√
q − 1)

.

We get the value for e upon substitution. �

9.3.3 Expander graphs

Expander graphs have popularly been used in many applications. In an expander graph,

every small set of vertices “expands”: the are “sparse” yet very “well-connected” (see

formal definition below). With high probability a random graph is a good expander.

Construction of “lossless” expanders have been notoriously difficult.

Definition 6 (Unbalanced Lossless Expander Graphs) A (k, ε)-unbalanced bipar-

tite expander graph is a bipartite graph G(L,R,E), |L| = d, |R| = m, where L is the set

of left nodes and R is the set of right nodes, with regular left degree ` such that for any

S ⊂ L, if |S| ≤ k then the set of neighbors N(S) of S has the size N(S) > ε`|S|.

The following proposition describe the expander property of random graphs.

Proposition 7 A random construction of bipartite graphs G(L,R,E) with |L| = d with

overwhelming probability, is (k, ε)-lossless `-regular expander where ` = O(log d/ε) with

|R| = m = O(k`/ε).

The trade-off of this proposition is close to the best we can hope for. The proof can

be shown by simple random choice and can be found in [144]. The next definition and
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the subsequent two claims are from [144]. First, let us now connect a lossless expander

with disjunct matrix.

Definition 7 A bipartite graph G(L,R,E) is called (k, e)-disjunct if, for every left ver-

tex i ∈ L and every set S ⊆ L such that |S| ≤ k and i /∈ S, we have |N(i)\N(S)| > e.

It can be seen that the bipartite adjacency matrix A of a disjunct graph G is a disjunct

matrix.

Proposition 8 Let G be a (k, e)-disjunct graph with adjacency matrix A. Then for

every pair of y, y′ ∈ {0, 1}d of k -sparse vectors, we have ∆(A ∨ y,A ∨ y′) > e, where

∆(·) denotes the Hamming distance between vectors.

The following proposition relates expander graphs with disjunct graphs.

Proposition 9 Let G be a `-regular (k, ε)-lossless expander. Then, for every α ∈ [0, 1),

G is (k − 1, α`)-disjunct provided that ε < 1−α
` .

Combining these comments, we get the following:

Proposition 10 (Random Graphs) The adjacency matrix of a randomly constructed

bipartite graph is, with overwhelming probability, k-disjunct with m = O(k2 log(d/k)).

More generally, for every α ∈ [0, 1), random graphs are (k, e)-disjunct, with e =

Ω(αk log d/(1− α2)) with m = Ω(αk2 log(d/k)/(1− α2)).

There is an explicit construction of unbalanced (k, ε)-lossless expanders for any setting

of d and m presented in [145]. These constructions yield explicit k-disjunct graphs with

m = O(k2quasipoly(log d)).

With all the above constructions, we can correct a reasonably large number of e

errors by the binary classifiers. The number of classifiers required for MLGT will be

m = O(k2 log d) which is more than the CS approach where m = O(k log d). However,

our analysis is for the worst case: as we saw in Theorem 13, if we tolerate a small ε

fraction of error in recovery, we can achieve m = O(k log d) for MLGT as well. Moreover,

MLGT yields zero prediction error for a k sparse label vector even if up to e/2 classifiers

mis-classify. With MLCS, we only get an ε error guarantees and with respect to 2-norm.
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9.4 Error Analysis

Here we summarize the theoretical error guarantees for multilabel classification using

group testing (MLGT).

Theorem 14 Consider MLGT with an m × d binary matrix A, and a label vector y

with sparsity at most k. Suppose A is (k, e)-disjunct, and we use Algorithm 8 during

prediction. Let ŷ be the predicted label vector and ∆(·) denote the Hamming distance

between vectors. If t number of binary classifiers that make errors in prediction, then

we have

• If t ≤ be/2c, then the prediction error ∆(y, ŷ) = 0.

• If t > be/2c, ∆(y, ŷ) ≤ w(t − e/2) (Hamming error), where w is the maximum

weight of rows in A. In particular, the error rate (average error per class) will be
w
d (t− e/2).

If A is a k-disjunct with ε error tolerance, then the prediction error will be at most

(w(t− e/2) + εk).

Proof. When, t ≤ e/2, we know that the decoding algorithm will still recover

the exact label vector due to the error correcting property of the (k, e)-disjunct matrix.

When, t > e/2, e/2 of the errors are corrected. For every remaining t− e/2 errors, if w

is the maximum weight of rows in A, a maximum of w errors can occur in the predicted

label. This is because, the support different |A(l)\ẑ| can change for a maximum of

w columns. Hence, the error can be at most w(t − e/2), and the error rate will be
w
d (t − e/2). For the k-disjunct matrix with ε error tolerance, the decoding algorithm

can make up to εk errors in addition to w(t− e/2). �

Let us see how the error-rate of various group testing constructions translate to

MLGT. In the case of a random matrix construction, we have w ≈ d/k. So, the error

rate for this matrix will be (t− e/2)/k. From proposition 4, we can take m = k2 log d,

and e = 3k log d. Hence, the error rate for a random (k, e) disjunct matrix will be

t/k−3/2 log d, for any t > 3/2k log d. For any t less than this the error rate will be zero.

Similarly, we can see that the randomized construction of Thm. 13 with m = O(k log d)

rows, gives the average error rate is (t/k −O(log d) + εk/d) for t > k log d.
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Corollary 5 (Constructions) For MLGT, we have the following results for different

constructions:

• If A is constructed via randomized construction of Prop. 4 with m = O(k2 log d)

rows, then the average error rate is t/k − 3
2 log d for t > 3/2 log d.

• If A is constructed via randomized construction of Thm. 13 with m = O(k log d)

rows, then the average error rate is (t/k −O(log d) + εk/d) for t > k log d.

• If A is constructed deterministically via Kautz-Singleton Reed-Solomon codes con-

struction of Prop. 5 with m = O(k2 logk d) rows, then the average error rate is
t

k logk d
−O(1) for t > k logk d.

• If A is constructed via expander graph-based construction of Prop. 10 with m =

O(k2 log(d/k)) rows, then the average error rate is t/k−log(d/k) for t > k/2 log(d/k).

The error rate is zero for smaller number of mis-classifications t.

Proof. In the case of a random matrix construction, we have w ≈ d/k. So, the error

rate for this matrix will be (t− e/2)/k. From proposition 1, we can take m = k2 log d,

and e = 3k log d. Hence, the error rate for a random (k, e) disjunct matrix will be

t/k− 3/2 log d. The properties of the rest of the matrices can be proved in similar way.

�

9.5 Numerical Experiments

In this section, we illustrate the performance of the proposed group testing approach

in the multilabel classification problems (MLGT) via numerical experiments on various

datasets.

Datasets: We use some popular publicly available multilabel datasets in our exper-

iments. All datasets were obtained from The Extreme Classification Repository1 [139].

Details about the datasets and the references for their original sources can be found in

the repository. Table 9.1 gives the statistics of these datasets. In the table, d = #labels,

k̄ =average sparsity per instance, n = #instances and p = #features.

1https://manikvarma.github.io/downloads/XC/XMLRepository.html

https://manikvarma.github.io/downloads/XC/XMLRepository.html
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Table 9.1: Dataset statistics
Dataset d k̄ n p
Mediamill 101 4.38 30993 120
Bibtex 159 2.40 4880 1839
Delicious 983 19.03 12920 500
RCV1-2K 2456 4.79 623847 47236
EurLex-4K 3993 5.31 15539 5000
AmazonCat-13K 13330 5.04 1186239 203882
Wiki10-31K 30938 18.64 14146 101938

Constructions: For MLGT, we consider three different group testing constructions.

The Kautz-Singleton construction with q-ary Reed-Solomon (RS) codes, where we use

RS codes [40] with q = 16 and m = 240; and q = 8 and m = 56. To get desired

number of codewords (equal to number of labels), we use appropriate message length.

For example, if d ≤ 4096, q = 16, then we use message length of 3, and if d ≤ 65536,

we use message length of 5. We also use two random GT constructions, namely, the

random expander graphs and the sparse random constructions discussed in sec. 9.3. For

MLCS (compressed sensing approach), we again consider three different types compres-

sion matrices, namely, random Gaussian matrices, compressed Hadamard matrices and

random expander graphs.

Evaluation metrics: Two evaluation metrics are used to analyze the performances of

the different methods. First is the Hamming loss error, the Hamming distance between

the predicted vector ŷ and the actual label vector y, ∆(y, ŷ). This metric tells us how

close is the recovered vector ŷ is from the exact label vector y, and is more suitable

for binary vectors. Hamming loss captures the information of both correct predictions

and false labels. All prediction errors reported (training and test) are Hamming loss

errors. The second metric used is Precison@k (P@k), which is a popular metric used in

MLC literature [137]. This measures the precision of predicting the first k coordinates

| supp(ŷ1:k) ∩ supp(y)|/k. Since we cannot score the labels, we use k = nnz(y) the out-

put sparsity of the true label for this measure. This is equivalent to checking whether

the method predicted all the labels the data belongs to correctly or not (ignoring mis-

classification). When Precision@k for k = 1, 3, 5 are used, one is checking whether the

top 1, 3 or 5 labels are predicted correctly (ignoring other and false labels).
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Figure 9.1: Average training and test errors and Precison@k versus sparsity k for
RCV1-2K for different MLGT and MLCS methods.

MLGT vs MLCS: In the first set of experiments, we compare the performances

of the group testing approach (MLGT) and the compressed sensing approach (MLCS)

using different group testing constructions and different compression matrices. A least

squares binary classifier was used {wj}mj=1 for MLGT. Least squares regression with `2

regularization (ridge regression) is used as the regressors for MLCS and other embedding

based methods. Orthogonal Matching Pursuit (OMP) [116] was used for sparse recovery

in MLCS.

Figure 9.1 plots the average training and test errors and average Precison@k against

the sparsity k of the label vectors (data with label sparsity k used) obtained for MLGT

and MLCS methods with the three different matrices respectively. The dataset used

was RCV1-2K. This dataset has at least 2000 training points and 500 testing points for

each label sparsity ranging from 1 to 10. We observe that the training error for MLGT

methods are almost zero and training Precison@k almost one. Results with test data

for MLGT are also impressive, achieving Precison@k of almost 0.8 for small k.

We observe that, the MLGT method with all the three GT constructions outperforms

the MLCS method. This is because, the binary classifiers are optimally trained on

the reduced binary vectors and since the matrices used were k-disjunct, we had zero
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Table 9.2: MLGT v/s OvsA
MLGT OvsA

Dataset d Err P@k time Err P@k time

Medmill 101 0.68 0.24 5.9s 2.07 0.17 13.1s
Bibtex 159 1.17 0.11 14.1s 2.55 0.16 36.6s

Table 9.3: Comparisons with embedding methods. Average Test errors.
MLGT MLCS ML-CSSP PLST SLEEC

Dataset m Err time Err time Err time Err time Err time

Mediamill 40 2.27 2.35s 4.10 4.04s 4.44 13.4s 10.10 2.13s 4.37 4.55s
Bibtex 50 1.57 7.81s 2.93 14.7s 5.63 23.9s 7.39 12.1s 4.85 38.3s
Delicious 150 4.99 18.1s 9.43 29.9s 5.66 47.7s 15.66 17.3s 4.79 18.7s
RCV2K 200 1.14 154s 4.37 387s 24.60 339s 20.98 290s 4.94 210s
EurLex 200 3.03 160s 8.55 367s 9.30 337s 15.40 297s 4.84 455s
AmznC 250 4.49 12mn 11.10 22mn 13.66 19mn 7.50 18mn 6.93 1.2hr
Wiki10 300 5.58 283s 14.22 18mn 8.30 17mn 15.15 17mn 6.62 54mn

recovery error in most cases. Hence, the predicted labels for training data were extremely

accurate. The results on test data are also better for MLGT in almost all cases. We also

observed that MLGT is significantly faster than MLCS (as expected) because, MLCS

uses an optimization algorithm (OMP) for recovery of labels, see Table 9.3 for runtimes.

In the prediction algorithm of MLGT, we have a parameter e, the number of errors

the algorithm should try to correct. The ideal value for e will depend on the GT matrix

used, the values of m, k and d. However, note that we can test for different values

of e at no additional cost. That is, once we compute the Boolean AND between the

predicted reduced vector and the GT matrix (the dominant operation), we can get

different prediction vectors for a range of e and choose an e that gives the highest

training P@k.

One vs all: We next compare MLGT against the one versus all (OvsA) method

on two small datasets. Note that OvsA required d classifiers to be trained, hence is

impractical for larger datasets, and we will need a distributed implementation such as

DiSMEC [142]. Table 9.2 gives the results for MLGT and OvsA methods for two small

datasets. n = 5000, nt = 1000, and for MLGT m = 50. The table lists the Hamming

test errors and Precision@k (P@k) for the two methods. The table also gives the overall

runtimes for the two methods. We note that wrt. to both metrics, MLGT performs

better than OvsA. This is due to two reasons. First, MLGT groups the labels hence has
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more training samples per group, yielding better classifiers. Second, the error correction

by the prediction algorithm corrects few classification errors. Clearly, MLGT is faster

than OvsA. However, OvsA gives better training errors.

Embedding methods: In the next set of experiments, we compare the performance

of MLGT against the popular embedding based methods. We compare with the fol-

lowing methods. ML-CSSP, is an embedding method based on column subset selec-

tion [108]. PLST, is Principal Label Space Transformation [107], an embedding method

based on SVD. SLEEC, Sparse Local Embeddings for Extreme Classification [139], is

the state of the art embedding method based on clustering using nearest neighbors

and then embedding in the cluster space. For MLGT, we use the random expander

graph constructions. For MLCS, we use random Gaussian matrices. Same least squares

regressor was used in all the latter four methods.

Table 9.3 lists the test (Hamming) errors obtained for the different methods on

various datasets. We use smaller datasets since the embedding based methods do not

scale well for large datasets. We also used only 2000 training points and 500 test points

in each cases. We observe that MLGT outperforms the other methods in most cases.

The datasets have very sparse label (avg. sparsity of around k̄ ≈ 4), but the outputs of

MLCSSP and PLST are not very sparse. Hence, we see high Hamming error for these

two methods, since they yield a lot of false labels. Moreover, these embedding methods

are significantly more expensive than MLGT for larger datasets. The runtimes for each

method are also listed in the table.

The runtimes reported (using cputime in Matlab) includes construction of compres-

sion matrices, multiplying the matrix to the label vectors (boolean OR/SVD computa-

tion), training the m classifiers, and prediction of n training and nt test points. SLEEC

performs reasonably well on all datasets (the ideal parameters to be set in this algorithm

for each of these datasets were provided by the authors online), and gives better P@k

than MLGT for some datasets. For Delicious dataset, the value of k is high and SLEEC

beats MLGT. However, SLEEC algorithm has many parameters to set, and for larger

datasets, the algorithm is very expensive compared to all other methods.
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Chapter 10

Union of Intersections

10.1 Introduction

In many scientific fields, the development of new sensing and imaging technologies has

resulted in generation of large volumes of data. These large datasets bring with them

opportunities of new discoveries and insights into the fundamentals of nature. Realizing

this potential requires novel machine learning and statistical data analysis algorithms

that are both interpretable and predictive. Statistical-machine learning algorithms for

scientific data should satisfy the bi-criteria of returning results that are simultaneously

predictive and interpretable. By predictive, we mean that it can predict (e.g., recon-

struct) the data with high accuracy; by interpretable, we mean that the results give

insight into the (bio)-physical processes that generated the data. Interpretability usu-

ally entails the sparse selection and accurate estimation of a small number of physically

meaningful features of the data. However, these bi-criteria are often at odds, and meth-

ods that robustly (few assumptions on the data/noise) achieve both are lacking. Such

methods could provide insights into natural phenomena through the extraction of phys-

ically or biologically interpretable models.

In this chapter, we present Union of Intersections (UoI), a flexible, modular, and

scalable framework for enhanced model selection and estimation. UoI satisfies the bi-

criteria of low-variance, nearly unbiased estimation of a small number of interpretable

features while maintaining high-quality prediction accuracy. We first introduce the

framework via. the LASSO regression problem. We then, present a novel two stage

149
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algorithm UoI-NMFcluster for NMF inspired by the UoI framework UoI-NMFcluster

yields: a) more accurate parts-based decompositions of noisy data, b) a sparse and

accurate weight matrix, and c) high-accuracy reconstructions of the de-noised data.

Together, these improvements enhance the performance and interpretability of NMF

application to noisy data, and suggest similar approaches may benefit other matrix

decomposition algorithms. Hence, we adapt the UoI framework for CUR decomposition

to develop the two stage UoI-CUR algorithm.

Modern technologies such as Electrocorticography (ECoG) and near-infrared spec-

troscopy (NIRS) have resulted in the collection of large volumes of neurophysiological

data. Extracting key features from such data will provide better insight into functioning

of the brain and may result in new discoveries. The novel machine learning algorithms

we develop in this chapter based on UoI are applied to different Neuroscience data to

exact interpretable results.

10.2 UoI for regression

Union of Intersections (UoI) is a flexible, modular, and scalable framework for statistical-

machine learning problems proposed in [11]. The core concept of the UoI framework

is to separate feature selection from feature estimation, and use bootstrap resampling

to determine stable features and estimate the parameter values for those features to

maximize predictive accuracy. In UoI-based methods, model selection is first performed

through intersection (compressive) operations which induce sparsity, followed by model

estimation through union (expansive) operations which reduces the variance of esti-

mates.

For example, consider the regression problem with `1 regularization: Given the data

(Y1, X1), . . . , (Yn, Xn), with univariate response Y and p-dimensional predictor variable

X, we wish to minimize

L(β, λ) = ‖Y −Xβ‖22 + λ‖β‖1.

In the UoILasso algorithm, we (1) calculate model supports (Sj) (location of nonzero

entries of β) using an intersection operation across different bootstrap resamples of the

data for a range of regularization parameters (λ: increases in λ shrink all values of β
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towards 0), constructing a family of model supports [S : Sj ⊂ Sj−k for ∆λ = λj − λj−k
sufficiently large]; (2) combine the pure model selection (obtained from the intersection

operation) with model estimation using a union operation to obtain better selection,

estimation and prediction accuracy. Further details on the UoILasso algorithm can be

found in [11]. The main contribution of this thesis is adapting this UoI framework to

develop new algorithms for NMF and CUR decomposition. We also apply the new meth-

ods to neurophysiological data to extract interpretable results from the Neuroscience

viewpoint.

10.3 UoI for nononegative matrix factorization

With the ever growing collection of large volumes of scientific data, development of inter-

pretable machine learning tools to analyze such data is becoming more important. Di-

mensionality reduction and low rank approximations/decompositions are popular tools

used in many applications to analyze high dimensional data. However, methods such

as principal component analysis (PCA) often yield uninterpretable results, as the eigen-

vectors can be additive combinations of up to all the data features. Alternate matrix

decomposition methods such as Nonnegative Matrix Factorization (NMF) and CUR

decomposition, which we saw in the first chapter, have been shown to perform well in

some scientific applications [146, 147].

Here we present a novel, noise-robust NMF algorithm (UoI-NMFcluster) that gives

more accurate parts based decompositions and sparser weight matrices with improved

reconstruction of denoised data. UoI-NMFcluster is inspired by the Union of Intersec-

tions (UoI) framework [11], and incorporates three innovations: (i) completely separate

bases (H) learning from weight (W ) estimation, (ii) learn bases (H) by clustering NMF

results across bootstrap resamples of the data, and (iii) use UoI to estimate ultra-sparse

weights (W ) to maximize data reconstruction accuracy.

UoI-NMFcluster is a two stage algorithm which computes sets of bases over boot-

strap resamples of the data using a standard NMF algorithm, and clusters the bases

to learn the best stable and uncorrelated set of k bases. The algorithm then directly

uses UoI applied to the non-negative least squares problem to compute a sparse weight

matrix that best reconstructs the original input data given the selected bases. Using
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this two stage process, our method ensembles different models (bases), selects the stable

bases using clustering, and achieves sparse, low-variance solutions (weights W in our

case) without imposing a prior, see [11] for the discussion.

The goal of UoI-NMFcluster is not to solve a single optimization problem to obtain

a single NMF, but to extract stable bases and learn sparse weights that map these

bases to the data with high accuracy. Our algorithm has some resemblance to popu-

lar ensemble methods [148], which improve prediction accuracy by combining different

models (parameter estimates). However, ensemble methods often include more features

(expand the feature space) to predict the response variables, which make them hard to

interpret [11]. UoI-NMFcluster generates a bootstrapped ensemble of potential bases,

and uses clustering to extract uncorrelated bases that are stable to the bootstrap proce-

dure. It then selects few bases (i.e., sparse model selection) and uses bagging to estimate

their contributions (W ) without imposing an explicit prior on the weight distribution,

thus giving low-bias and low-variance estimates. Through this approach, we find that

UoI-NMFcluster learns interpretable and predictive structure from complex, noisy data.

10.3.1 UoI-NMFcluster

Here, we present the UoI-NMFcluster algorithm. First, lets look at the notation used.

Notation: The input matrix A is assumed to be of size m× n with m data points in

Rn, is decomposed into a basis matrix H ∈ Rk×n with k rows and a weight matrix W ∈
Rm×k. We denote the output of UoI-NMFcluster by Ĥ, Ŵ of best rank k̂. The different

sets of NMFs obtained for different bootstraps are denoted by the pairs {Wi, Hi}B1
i=1,

where B1 is the number of bootstrap samples used. The set of integers 1, . . . , n is denoted

by [n]. A matrix that contains the indices of the nonzero entries of W is denoted by

Widx. For a given rank k1, the matrix where the basis matrices {Hi}B1
i=1 are stacked up

is denoted by H̃(k1).

The UoI-NMFcluster algorithm has the following two stages:

Bases Learning: We compute the matrices Hi and Wi for different bootstrap samples

of the data i = 1, . . . , B1, and for different ranks k using a standard NMF algorithm.

The multiplicative update algorithm [149] for the KL divergence error metric gave us the
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best results (any other NMF algorithm can also be used). The next step is to learn the

best basis matrix Ĥ from all the sets of bases {Hi}B1
i=1 learned over different bootstraps.

The objective is to learn a set of bases that are stable parts based decomposition of the

data.

We make the observation that bases which are stable, i.e., similar bases (near du-

plicates) that appear from different bootstrap samples are individual parts of the data,

and are close to each other spatially (are dense points in the spatial distributions). Also,

different parts of the data are dissimilar and must be apart from each other spatially.

Intuitively, one part should be different than other parts. That is, the dense clusters

formed by similar bases must be well separated. The noisy or spurious bases learned

will be different for each bootstrap samples and these are typically spread out spatially.

Hence, in order to learn a stable parts based decomposition of the data, i.e., extract

the stable (similar) bases from the set of bases learned over different bootstraps, and

ignore the noisy and spurious bases, we employ the popular robust density based cluster-

ing algorithm called DBSCAN (Density Based Spatial Clustering of Applications with

Noise) [150].

We cluster the k ·B1 bases learned over different bootstraps using the DBSCAN al-

gorithm. The DBSCAN algorithm has two parameters, namely, the threshold Eps and

the least minimum number of points per cluster (MinPts). We choose MinPts ≈ B1/2

because the stable bases should be learned for at-least half of the bootstrap samples.

The threshold Eps can be chosen using the strategy proposed in [150]. The algorithm

naturally clusters spatially dense points into individual clusters, hence, similar (stable)

parts based bases which are spatially dense, are grouped into different clusters. The

algorithm leaves out all noisy points (points not within the Eps-neighborhood of a clus-

ter) without assigning them to a group. Therefore, the clusters we obtain for DBSCAN

have only similar (stable) parts based bases. We choose the centers of these clusters as

the best (stable) bases Ĥ.

Bases Selection and Weight Estimation: Once the best bases Ĥ is learned, we

next update/recompute the weight matrices {Wi}B1
i=1 based on Ĥ. We use the same

UoI strategy as in UoILasso (UoI for `1 regression described above) for intersecting the

supports (intersect the location of nonzeros) of each rows of the weights based on new
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Algorithm 9 UoI-NMFcluster

Input: Data A ∈ Rm×n+ , rank k, and number of bootstrap resamples, B1, B2.

Output: Ŵ ∈ Rm×k+ and Ĥ ∈ Rk×n+ .
1. Bases Learning and Selection
for i = 1 to B1. do

i) Generate rid ∈ [n] random indices.
ii) [Hi,Wi] = NMFKL(A(rid, :), k).
iii) Rid(:, i) = rid; H̃ = [H̃;Hi].

end for
1a) Choose the best set of bases
1. Cluster the stacked matrix H̃ using DBSCAN.
2. Set centers of the clusters as new best bases set Ĥ.
1b) Update weights and intersection of supports
Recompute {Wi}B1

i=1 wrt. Ĥ using NNLS.
for l = 1 to n do

[r, c] = find(Rid = l).
For all r, intersect the support of rows of W[r] and save in Widx.

end for
2. Weight Estimation
for i = 1 to B2 do

Generate new r′id ∈ [n] random indices.
for l = 1 to LEN(r′id). do
widx = Widx(r′id(l));

Compute widx entries of {Wi}B1
i=1 using NNLS.

end for
end for
Ŵ = entrywise-mean({Wi}B1

i=1).

{Wi}B1
i=1’s estimated over bootstrap samples.

First, for selection, we compute a new weight matrix Wi for each bootstrap sample

i = 1, . . . , B1, using Ĥ and the nonnegative least squares (NNLS) or nonnegative LASSO

regression method. For each row of weights, we then compute the intersection of the

support over all bootstrap samples in which this row was considered. This gives us

a sparse index matrix Widx with the intersected support of each row of {Wi}B1
i=1 over

different bootstraps.

Next, for estimation, we consider a new set of bootstrap samples (B2) and use

bagging to comput the weights of the output coefficient matrix Ŵ . We use the sparse

coefficient index matrix Widx, the best basis Ĥ, and NNLS to compute the rows of new
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Figure 10.1: 2D visualization of clusters of bases

Wi over B2 bootstrap samples. For each row of Wi, for all bootstrap samples in which

this row is considered, we employ NNLS to compute the weights of the coefficient whose

indices are in the rows of Widx. The mean of the weights the across bootstrap samples is

chosen as the optimal estimate of the weights, Ŵ , which will be sparse (because Widx is

sparse), and have low-bias (no explicit regularization) and low-variance (from bagging).

Algorithm 9 describes our UoI-NMFcluster algorithm. The algorithm can be mod-

ified for other NMF variants and other methods for clustering.

Geometric interpretation and uniqueness

Here, we present the theoretical intuition to use clustering across bases learned from

bootstrap samples to obtain more stable parts based decompositions. The uniqueness

of the solutions to the NMF problem was discussed in [151], using a geometric interpre-

tation of NMF with simplicial cones.

Geometric Interpretation: There is an unknown H-simplex whose vertices are the

rows of H ∈ Rk×n+ . We observe m points A ∈ Rm×n+ that lie in the H-simplex. The goal

is to identify the vertices of the H-simplex.

An important observation in [151, 152] is that, if the input data points come from a

simplex (without loss of generality), the bases learned by an NMF algorithm will be the

vertices of this simplex (non-overlapping bases with separated supports). In this case,

the data is called “separable”.

Separability: A NMF is separable if all the vertices H(j, :)’s appear in the observed
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points A(i, :)’s.

The separability of data was shown to be the key required property for unique solu-

tions for NMF. Article [152] showed that subset separability of data (a milder condition

of separability) is sufficient for obtaining unique solutions.

A NMF algorithm will return a unique solution (learn the vertices) when the data

are separable (uniqueness guarantees are shown in the literature only when the NMF

is separable or subset separable). However, such separability conditions are hard to

test, and are unlikely to hold when the data are noisy. If the data are from a simplex

with added noise, the NMF algorithms may learn some of the simplex vertices as bases,

along with the noise learned as one or more additional bases, because NMF is an additive

model. We show in our numerical experiments that basic NMF algorithms indeed learn

a few of these pure bases (vertices) and other bases are related to noise.

Generating bases from multiple bootstrap samples makes it likely that all the sim-

plical vertices will be present with in the superset of bases, i.e., rows of H̃ will likely

have many points near the vertices (the ’parts’ bases) which are dense spatially, and

a few other noisy points related to noisy bases. The noisy bases are widespread and

unlikely to be near the vertices. Hence, density based clustering across all the points

and using the centroids will give us the vertices of the simplex. DBSCAN ignores the

few noisy points that are spread out. Figure 10.1 gives a 2D visualization obtained

by tSNE algorithm [153], of the clustered (spatial) distribution of bases learned over

different bootstrap samples for the Swimmer dataset, described in the next section.

The colors indicate the clusters assigned by the DBSCAN algorithm with red depicting

noise points. Therefore, for separable data with noise, using density based clustering

and extracting the cluster centroids will likely return the vertices of the simplex, i.e.,

the stable part based bases.

10.3.2 Numerical Experiments on Synthetic Data

In this section, we illustrate the performance of our proposed algorithm on few syn-

thetic datasets. We compare UoI-NMFcluster (with B1 = 20 and B2 = 10) to basic

NMF (using ALS with multiple initial conditions), sparse NMF (as implemented by

SPAMS library), and TSVDNMF. and for sparse NMF, we used different parameters λ
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Figure 10.2: UoI-NMFcluster for noisy Swimmer data.

incrementally, and reported the best results. We find that UoI-NMFcluster yields parts-

based, noise-free bases, and thus reconstructions obtained are also noiseless (denoised

data).

Swimmer Dataset - In the first experiment, we consider the swimmer dataset [151],

the canonical example of separable data: each image can be reconstructed from a subset

of non-overlapping bases. We compared the performance of UoI-NMFcluster against

other NMF algorithms with multiple random initial conditions for the swimmer dataset

corrupted by heavy additive noise (Absolute Gaussian noise, |N (0, 0.25)|). The dataset

contains 256 images of size 32 × 32 each. We concatenated 10 noisy sets of these 256

images (2560 in total) as the input matrix (of size 2560× 1024).

Figure 10.2 illustrates the performance of UoI-NMFcluster algorithm on this noisy

data. The first 4 × 4 images of the figure show the 16 bases (parts) learned by

UoI-NMFcluster. The second set (4 × 4 images) displays the sparse weights estimated

to reconstruct 16 randomly chosen images. The third set depicts the recovered images

Â = Ŵ Ĥ, and the last 4× 4 image set gives the original noisy input images A.

The resulting bases from UoI-NMFcluster are remarkably good parts based decom-

positions of the denoised data, even though the input matrix had very high noise. We

see that UoI-NMFcluster learns all the 16 bases (parts) almost exactly. Thus, for data

generated from bases that are vertices of a simplex, our algorithm yields the unique

solution that exists, even when the observed data is highly noisy, and hence not sep-

arable. We also observe that the weights learned are sparse due to the intersection

operation of UoI, resulting in the algorithm choosing only bases that are relevant for
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Figure 10.3: UoI results for noisy MNIST two digits data.

the reconstruction of the original data. The nonzero patterns of the weights given in

Fig. 10.2 shows that exactly four bases are chosen for reconstruction for all the images.

We clearly see that the recovered images are denoised versions of the noise corrupted

input images. When the input data are noisy, most basic NMF algorithms tend to learn

the noise as a separate bases (due to the additive nature of the factorization).

MNIST 2-digit data - Next, we use the popular handwritten digit images from the

MNIST dataset [154]. The dataset contains different sets of handwritten digits from

0 to 9 (by different individuals), and in this experiment we select one such set and

concatenate two of these images to form 2-digit handwritten numbers (00 to 99). We

have 100 such concatenated images. We consider noise (|N(0, 0.2)|) corrupted images

(10 repetitions, hence we have 1000 images) for training the NMF algorithms. The goal

is to learn the individual digits (at units and tens place).

Figure 10.3 shows the results. The first 5× 4 images show the bases learned by our

algorithm. The estimated weights to reconstruct 20 randomly chosen images are given

along with the reconstructions and the original noisy images. UoI-NMFcluster gives

better single digit bases than basic NMF, as well as sparse NMF. We also observe the

weights learned are quite sparse, exactly two in most cases. Note that, in contrast to the

swimmer data set, in this example, the bases (digits) are not quite vertices of a simplex,

and hence even noiseless data is not quite separable. Thus, the learned bases are not

perfectly decorrelated (e.g., a nine and a one and a seven are all highly correlated). Yet,

UoI-NMFcluster learns these 20 bases quite accurately.

Table 10.1 summarizes the results obtained by the different NMF algorithms (first

column) on different datasets (second column). The algorithms are : basic NMF is
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Table 10.1: Comparison of NMF algorithms.

Methods Data Error (n.less) MSE Error (noisy) nnz(Ŵ ) nnz(Ĥ)
UoI-NMFcluster Swimmer 16.8 0.0015 195.1 4 22
basic NMF Swimmer 54.2 0.0052 202.6 3 41.5
sparse NMF Swimmer 60.4 0.0055 206.2 5 60
TSVDNMF Swimmer 71.3 0.0236 240.5 3 80
UoI-NMFcluster MNIST 36.61 0.0029 194.3 2 105.5
basic NMF MNIST 48.69 0.0102 153.07 3 144.5
sparse NMF MNIST 59.06 0.0268 192.02 2 149
TSVDNMF MNIST 78.83 0.0580 256.77 3 156
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Figure 10.4: Performance wrt. number of bootstrap resamples.

the basic NMF algorithm with KL divergence error metric, UoI-NMFcluster is the pro-

posed algorithm with basic NMF-KL as the inside algorithm, sparse NMF and TSVD-

NMF [155].

We give the error ‖A −WH‖F for the reconstruction of original noiseless data the

third column and list the average mean squared error (MSE) between the exact and

the learned bases in the fourth. The reconstruction error ‖A−WH‖F when the noisy

training data was recovered are listed in the fifth column. We also give the median

nonzeros per row in the weights W and the bases H learned by the different algorithms

in the last two columns respectively.

Number of bootstraps: We know that the number of bootstraps B1 and B2 used

in UoI-NMFcluster are parameters which we can tune. In this experiment, we try to

understand the influence of the number of bootstrap samples used on the quality of

results obtained. We apply UoI-NMFcluster with different number of bootstraps B1 on

a noisy Swimmer dataset (five noisy sets with σ2 = 0.2), and plot the results.

Figure 10.4 plots the mean pairwise correlation and the average MSE between the

exact and the learned bases as a function of the number of bootstraps B1 in the first two
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plots. The reconstruction errors for noisy and original data using the bases learned by

the UoI-NMFcluster for the different number of bootstraps used are plotted in the last

two plots. All plots show the mean and the error bars over 5 trials. We see that, as the

number of bootstraps increases, the quality of bases learned improves up to a certain

number and then for large number of bootstraps, the quality remains the same. This is

because, as the number of bootstraps increase, the density of the clusters increase and

the DBSCAN algorithm performance improves. There seems to be a number (between

15-20) beyond which, DBSCAN is able to select all 16 bases exactly. Increasing the

number of bootstraps beyond will not have much effect on the quality of bases learned.

The reconstruction errors for the noisy and original data also decrease initially as the

number of bootstraps increases due to improvement in the basis quality. The improve-

ment in the results are also due to improved weight learning by the UoI framework. But,

for larger B1 (> 25), the error slightly increases for recovering noisy bases because the

weights learned become very sparse due to the intersection operation. We see the peak

performance occurs for around 20-22 bootstrap resamples. Hence, we chose B1 = 20 in

all our experiments. The effect of the number of bootstraps B2 in the weight estimation

stage will be similar to effect of the number of bootstraps in the feature estimation stage

of UoILASSO. For discussion related to this, see [11]. Additional experimental results

can be found in [12].

10.3.3 Experiments on Scientific Data

In the following experiments, we demonstrate the performance of UoI-NMFcluster in

two scientific applications.

Mass Spectrometry Imaging of Mouse Brains: Mass Spectrometry Imaging

(MSI) is a modern chemical imaging technique that has enabled investigation of metabolic

processes at very high resolution (subcellular to centimeter range) [156]. In MSI, a laser

is raster scanned across a surface and molecules are desorbed from the surface at each

location. These ions/molecules are then collected and analyzed by mass spectrometry,

which yields a large number of spectral images. MSI may contain spectral images with

up to a million pixels and are typically collected over 104 to 106 frequency bins (m/z).

Hence, such MSI data present many analysis and interpretation challenges due to the
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Figure 10.5: UoI-NMFcluster results for mouse brain MSI dataset.

size and complexity of the data. The objective of using NMF (or any other dimension-

ality reduction techniques) on MSI data is to reduce the large volume of measured data

into easier to interpret smaller blocks. The goal is to identify important locations/pixel

positions and the corresponding chemical composition.

Here, we consider the MSI data (NIMS) of the coronal section of mouse brain from

OpenMSI1 [157]. The data contains 120× 122 size spectral images, computed at 80339

frequency m/z bins. The data is very noisy and preprocessing is necessary. The data

were preprocessed by using background subtraction, smoothing and peak picking as

mentioned in [147]. This reduces the data points from 80339 to 697, after peak picking.

Figure 10.5 shows the six bases learned by UoI-NMFcluster and the corresponding

weight distribution learned for the respective bases. We found that many of the bases

learned by UoI-NMFcluster corresponded to spatially localized, anatomically defined

parts of the mouse brain (e.g., sensory cortex [a,b], hippocampus/putamen [c], and

globus paladus [d], hypothalamus [e] and piriform cortex [f], pointed by arrows). We

also observe from the weight distributions that, these parts (bases) appear at different

frequency m/z bins, in line with the notion that these different regions of the brain have

different chemical compositions.

1https://openmsi.nersc.gov/

https://openmsi.nersc.gov/
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Figure 10.6: Rat ECoG recordings: Left - ToneMap of the auditory cortex. Right -
UoI-NMFcluster bases.

Electrophysiological Data from Rat Cortex: The objective of this experiment is

to learn a set of bases (channel responses/ neuron firing patterns) from the ECoG record-

ings for certain stimuli. With the ever increasing number of simultaneously recorded

neural signals, neuroscience has seen a resurgence in the application of dimensional-

ity reduction algorithms to summarize high-dimensional data. However, the primary

method used in the field, PCA, has made the interpretation of the physical meaning

of the derived axes opaque (a common critique of PCA). Here, our goal was to de-

termine if UoI-NMFcluster could extract a physically meaningful bases directly from

neural recordings when there is a known spatial organization of neural response prop-

erties (otherwise, how would we know what success would look like?). To this end, we

applied UoI-NMFcluster to neural recordings taken from the auditory cortex of a rat,

which has a well characterized spatial organization of frequency representations across

the cortical surface (i.e., tonotopy).

In the experiment, we used the neural response recordings collected from the pri-

mary auditory cortex of an anesthetized rat using a 64 channel µECoG. Following

standard procedures in the field, at each electrode, we determined the neural response

by extracting the analytic amplitude from the ’high-gamma band’ [70-150Hz], which

correlates well with multi-unit spiking activity. These responses were z-scored relative

to the baseline statistics for each channel individually. The response was for auditory

stimuli consisting of 210 different sounds (30 frequencies and 7 amplitudes) with 20

repetitions (trials) each. The number of time steps used was 101. Hence, the data was
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of size 64 × 4200 × 101. This data was preprocessed by doing peak response picking.

For each stimuli, the peak response after the stimulus starts (after 40 time steps), for

each channel was chosen as that channel’s output for that particular stimulus. Hence,

the data was reduced to 64 × 4200 (with each 20 set of columns corresponding to the

210 stimuli each).

From these data, for each recording channel (’pixel’), we can determine the sound

frequency which gave the largest response across amplitudes (the center frequency). In

Figure 10.6 (left), we color code each pixel in the array according to its center frequency

(color bar on right). Here, we see a general posterior-to-anterior (left-to-right) progres-

sion of center frequencies going from low center frequencies to high center frequencies,

with relative isotonic representations along the dorsal-ventral (top-to-bottom) axis. In

neuroscience, this spatial organization of frequency representations is known as tono-

topy. We note that, while we can summarize the responses in this way, the underlying

data is more complex, with each electrode giving a graded response as a function of

both amplitude and frequency, and the data on single-trials are noisy: thus, these data

are not separable.

Figure 10.6(right) gives the bases learned by UoI-NMFcluster on this data. Bases are

plotted as 8×8 grid to represent the ECoG grid for visualization as per the channel grid

location, and are ordered according to the location of large values. Here, we see that the

different bases reflect the tonopic organization of the underlying cortical tissue. That is,

the different bases are constrained in the anterior-posterior axis (i.e., across columns)

while being extensive in the dorsal-ventral axis (i.e., across rows), and generally tile the

grid across the anterior-posterior axis.

10.4 UoI for CUR decomposition

In the previous section, we saw how the UoI-framework helped us to develop a novel

NMF algorithm that was robust to noise and yielded interpretable parts based decom-

positions of the data. UoI-NMFcluster selects the right set of bases and estimates the

weights separately to reconstruct the data optimally and avoid the reconstruction of

the noise. These superior results from UoI-NMFcluster suggest that a similar approach

may result in improved results from other data decomposition algorithms.
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In the first chapter, we introduced the CUR decomposition, one of the popular

dimensionality reduction method used in many applications. Here, we adapt the UoI

framework for CUR decomposition to develop the two stage UoI-CUR algorithm. The

algorithm reduces the variance of column/row sampling via the intersection operation.

UoI-CUR: The UoI-CUR algorithm is as follows: We consider the bootstrap resam-

pling approach (for column selection, we subsample rows and vice versa). We com-

pute the different subsets of columns (and rows) Ci for the different bootstrap samples

i = 1, . . . , B1, and for different ranks k using leverage score sampling.

Intersection: We then intersect the support (indices) of the subsets of columns (and

rows) Ci over the bootstraps to obtain a smaller intersected subset Ĉ(k) (for different

ranks k). This intersection operation reduces the variance in sampling.

Union: Next, we obtain a larger union set of columns by taking union of the

intersected subsets Ĉ(k) over different ranks k.

10.4.1 Experiments - Tagging gene expressions

Analysis of gene expression DNA microarray data has become popular for studying a

variety of biological processes [105]. In the microarray data, we have m genes (from m

individuals possibly from different populations) and a series of n arrays probe genome-

wide expression levels in n different samples, possibly under n different experimental

conditions. Hence, the data from microarray experiments is represented as a matrix

A ∈ Rm×n, where Aij indicates whether the jth expression level exists for gene i.

Typically, the matrix could have entries {−1, 0, 1} indicating whether the expression

exists (±1) or not (0) and the sign indicating the order of the sequence. In chapter 5,

we saw how CUR decomposition and coarsening techniques can be used to select a

subset of gene expressions or single nucleotide polymorphisms (SNPs) called the tagging

SNPs (tSNPs) which best represent the gene pools. In this section, we demonstrate

how the UoI-CUR algorithm performs in this application.

We consider here the same two datasets which we considered in chapter 5. Table 10.2

lists the errors obtained from the three different methods, namely,UoI-CUR, basic CUR

and Greedy selection [105] for different populations. The error reported is again given by

nnz(Â−A)/nnz(A), where A is the input encoding matrix, C is the sampled/coarsened
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Table 10.2: TaggingSNP: UoI-CUR, basic CUR and Greedy selection

Data Size c UoI-CUR Basic CUR Greedy CUR

Yaledataset/SORCS3 1966× 53 30 0.0096 0.0323 0.0062
Yaledataset/PAH 1979× 32 20 0.0165 0.0308 0.0165
Yaledataset/HOXB 1953× 96 36 0.0690 0.1369 0.0272
Yaledataset/17q25 1962× 63 35 0.0507 0.0895 0.0197

HapMap/SORCS3 268× 307 83 0.0023 0.0624 0.0023
HapMap/PAH 266× 88 42 0.0087 0.0130 0.0053
HapMap/HOXB 269× 571 57 0.0840 0.1696 0.0211
HapMap/17q25 265× 370 80 0.0421 0.1819 0.0162
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Figure 10.7: UoI-CUR : Error ‖A−PCA‖F as a function of the number of columns c.

matrix, Â = CC†A, is the projection of A onto C and nnz(A) is the number of elements

in A. Recall that the greedy algorithm is very expensive but performs very well in

practice. We observe that the UoI-CUR algorithm performs better than basic CUR and

the performance is comparable with the greedy algorithm in many cases.

Figure 10.7 plots the results for two of the genetics data sets considered in Table 10.2,

as a function of the number of columns c. UoI resulted in reconstruction errors that

were consistently lower than the base method (basic-CUR), and quickly approached an

unscalable greedy algorithm (Greedy-CUR) as the number of columns c increases. Thus,

in both cases, UoI improved the prediction parsimony relative to the base method.



Chapter 11

Material Informatics - Mining

material data

11.1 Introduction

In recent years, as a result of the Material Genome Initiative1, machine learning (ML)

techniques have emerged among other ‘material informatics’ methods, for exploring

materials data. Material informatics techniques based on machine learning have been

shown to be inexpensive means of exploiting materials data, and can be used to examine

a variety of thermodynamics properties. In the final chapter of this thesis, we apply

well-known supervised regression techniques to predict properties of compounds that

are hard and expensive to compute otherwise, using easily available physical, chemical

and structural properties of the compounds, known as features in machine learning or

descriptors in material science. The goal of this work is to help bypass time intensive

calculations (some take days of computations), e.g., ab-initio calculations, used in ma-

terial science. In particular, we present of a machine learning (regression) technique for

prediction of the formation enthalpies of new metal alloys using easily available material

data.

1https://www.mgi.gov/

166
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11.2 Formation Enthalpy of metal alloys

The thermodynamic data of alloys such as the standard enthalpy of formation ∆H (also

known as standard heat of formation) plays an important role in several applications,

e.g., in the calculation of phase diagrams and materials design, in the exploration of

new materials having high melting points that can be used in advanced coal-fired plants,

building heat-exchangers, filters, and turbines, and many more. The heat of formation

of an alloy indicates its stability, i.e., a more negative enthalpy of formation implies a

more stable alloy. Also, the sign of ∆H is a fundamental property that can serve as an

indicator for the stability of a given alloy. Systems with a positive ∆H are only stabilized

by entropy considerations. In addition, the formation enthalpies of compounds are also

significant for certain high-throughput density functional theory (DFT) calculations

[158]. Unfortunately, it is well known that determining such thermodynamic properties

via experiments is difficult, especially for compounds with high melting points.

Since the experimental determination of thermodynamic properties of a vast com-

binations of elements is inefficient, recent research has focused on developing various

computational approaches to predict and estimate these properties of interest. In the

case of the enthalpies of formation of compounds, several different approaches have

been proposed over the years. For example, we note the Hildebrand formula [159] for

enthalpy of solutions, a semi-empirical model of alloy cohesion by Miedema et al. [160],

and a modified embedded atom model for random alloys [161]. Popular among these,

particularly for binary metal alloys, is Miedema’s model.

Miedema and his co-authors [160, 162] developed a semi-empirical method for pre-

dicting the heat of formation of binary intermetallic compounds that contain at least

one transition metal. They showed that the formation enthalpies of such binary alloys

can, in general, be described in terms of a simple atomic model, that depends only

on two parameters of the constituent atoms. Their model has been very successful in

predicting correctly the signs for the heats of formation. However, it is less quantitative

for predicting the magnitude of the enthalpy change and requires certain experimental

information.

With the advent of density functional theory and its concurrent implementations for

realistic computations, using first principles or ab initio calculations for predicting and
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understanding material properties has become popular [163, 164, 165]. One can com-

pute accurate values for the formation enthalpies of compounds using such calculations.

However, a major drawback of DFT calculations is the relative high computational

cost, especially for a quick screening of a large database, and the need for certain prior

information such as a known crystal structure.

In recent years, machine learning (ML) techniques have emerged for exploiting ma-

terials data. A popular approach in the literature is to apply tools from machine learn-

ing on certain DFT calculations to accelerate prediction of various properties of com-

pounds [166, 167]. Ideas from machine learning have been coupled with databases of

ab initio calculations to estimate molecular electronic properties in chemical compound

space, including the enthalpy of formation of compounds [168, 169]. However, these

methods still have the major disadvantage of requiring results from many DFT cal-

culations, which may not be possible for alloys without given crystal structures, i.e.,

amorphous or noncrystalline alloys. Recently, a machine learning approach to predict

the density functional theory total energies has been implemented and these predictions

are used to compute the enthalpies of formation of metal-nonmetal compounds [158].

In this chapter, we present an alternative machine learning approach to predict

the formation enthalpies of binary metal alloys. The method we propose differs from

previous ML techniques in that it uses readily available properties of the constituting

elements (elemental properties), complemented by some basic properties of the com-

pounds that are available in popular databases (e.g., Materials Project 2), to predict

the formation enthalpies.

A large set of (publicly available) elemental properties is considered and three dif-

ferent methods are explored to select (a smaller set of) appropriate elemental properties

for enthalpy prediction from this large set. The three sets of elemental properties used

are: (i) properties selected based on a literature study, (ii) properties obtained through

sensitivity analysis. (iii) properties selected by a modified LASSO (Least Absolute

Shrinkage and Selection Operator) method [170]. The first set can be viewed as a set

selected based on prior physics knowledge, while the latter two are based on machine

learning methods (do not take into account any physics knowledge). Our results indi-

cate that features (elemental properties) selected based on the prior physics knowledge

2https://materialsproject.org/

https://materialsproject.org/
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perform better in predicting enthalpies than those obtained through machine learning

techniques.

A well-known method exploited in machine learning and known as “Support Vector

Regression” is employed for the formation enthalpy predictions. The approach pro-

posed in this work is fast and does not require DFT calculations, since the model takes

available properties of elements and compounds as input, and is trained and validated

against (or reproduces) the formation enthalpies calculated using Miedema’s model,

which are also easily available for many binary alloys. Since the Miedema’s model is

itself not very accurate, the proposed machine learning approach cannot give highly

accurate formation enthalpies. However, the presented method is an extremely in-

expensive technique aimed at predicting formation enthalpies of new compounds (as

accurately as Miedema’s model) without any empirical information. Such enthalpy pre-

dictions suffices in many applications such as new material discovery, stability analysis

and melting point predictions. In applications where accurate formation enthalpies are

required, these predictions can be coupled with simple DFT calculations (which are less

expensive than full DFT calculations taking elemental properties as an input) to obtain

accurate enthalpies.

11.3 Machine Learning for Prediction

The performance of machine learning predictions depends primarily on two aspects: the

feature selection and the machine learning model used.

11.3.1 Features Selection

A quintessential step for successful predictions is identifying the key characteristics of

the constituting elements (elemental features), that dictate or affect the properties of

the compounds that we wish to predict. In this chapter, we consider three different

approaches for feature selection.

Literature study: In order to identify a good set of elemental features that influence

the formation enthalpies of compounds, let us first look at Miedema’s model [160]. It

has been known for a long time that the work function φ is correlated to the ionization
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energy, the electron affinity and the electronegativity of constituting elements. While

ionization energy and electron affinity are properties of isolated atoms, the electroneg-

ativity provides information about the attraction the given atom has for electrons in

an ionic (or partially ionic) bond formed with another atom. For pure metals, the

theoretical electron density values nws depends on bulk modulus B and molar volume

V . Thus, Miedema’s model suggests that the following features of the constituting

elements are crucial for the prediction of the formation enthalpies: ionization energy,

electronegativity, electron density and molar volume.

Another model which helps to identify the elemental features that affect the forma-

tion enthalpies, is the Hildebrand formula for the enthalpy of solution of two liquids

[159]. This formula depends on two properties of the constituting liquids, namely, the

enthalpy of vaporization of the liquids and their molar volumes. The formation en-

thalpies describe the cohesion in the metal alloys [162]. The modified embedded atom

method by Ouyang et al. [161] uses the cohesive energy, formation energy and atomic

volumes of pure elements to describe the work function φ in Miedema’s model. From

the above studies, we expect that the following seven elemental properties are likely to

be the most influential features in predicting the formation enthalpy: ionization energy,

electron affinity, electronegativity, electron density, enthalpy of vaporization, cohesive

energy and molar volume.

Sensitivity method: A machine learning approach to identify the elemental features

that provide good property predictions is to use the ‘sensitivity method’ described by

Saad et al. [171]. To verify the impact of elemental features on the enthalpy prediction

accuracy, we find the sensitivity of each of the available properties of the constituting

atoms (we collected d′ = 49 properties of each element, and hence obtained d = 2d′ = 98

features in total after concatenation to represent the binary alloys).

The sensitivity method applied to our model can be described as follows: Let X ∈
Rn×d be a matrix that contains the known properties (the input features/descriptors)

of the individual compounds as columns (since X is a concatenation of the d′ properties

of the two elements forming a compound, the number of columns is d = 2d′). First,

for a considered feature k, we perturb the values of this feature for both elements of

each compound, i.e., the vectors X(:, k) and X(:, k + d′) are perturbed respectively by
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ε ≈ c10−8‖[X(:, k);X(:, k + d′)]‖, where c is a random number.

Second, we calculate a new coefficient vector aε, using the least squares solution

aε = (X>X)−1X>v, where v is a vector containing the actual formation enthalpies of

the compounds. Next, the norm of the difference between the original (obtained without

perturbing columns of X) and the perturbed coefficient vector ‖aε − a‖ is computed.

Finally, the ratio ‖aε−a‖ε is assigned as the sensitivity measure of the k-th feature.

The top seven most sensitive features for the prediction of formation enthalpies are : the

electrochemical equivalent weight3, first oxidation state, group number, effective nuclear

charge (Slater’s rule), metal radius, electronegativity and distance core electron.

LASSO method: Another alternative method used recently in the literature [172] for

feature selection is the so called compressed sensing approach, which is a LASSO [170]

type method. Given a large feature matrix X ∈ Rn×d, and the output vector v (property

to be predicted), the LASSO method yields a sparse relation between X and v by solving

the convex optimization problem

arg min
β∈Rd

‖v −Xβ‖22 + λ‖β‖1, (11.1)

where the `1-norm
(
‖β‖1 =

∑
i β(i)

)
promotes the sparsity in vector β. Thus, the

sparsity of vector β helps us to select the descriptors (columns of X) that best describe

v in the least squares sense. However, recall that the matrix X is formed by simply

concatenating the properties of the two constituting elements. Using the LASSO method

directly will not guarantee selection of the same set of properties for the two elements.

That is, the vector β need not have same nonzero coordinates in the first d′ = 49

coordinates (β(1 : 49)) and last d′ coordinates (β(50 : 98)). We indeed obtained different

sets of features being selected for the two elements when the LASSO method was used

directly in our experiments. In order to overcome this issue, we propose the following

3The electrochemical equivalent weight of an element is the ratio between its atomic weight and its
principal valence number.
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modified LASSO problem obtained by splitting vector β as β = [β1;β2],

min
β∈Rd

‖v −Xβ‖22 + µ‖β1 − β2]‖22 + λ‖β‖1

or min
β∈Rd

‖v −Xβ‖22 + µ‖Jβ‖22 + λ‖β‖1,

where J = [I,−I] with the identity matrix I. We include the additional term µ‖Jβ‖2
to ensure that the two halves of the vector β are close (equal), such that the same set of

properties is selected for the two elements (from the first 49 and the last 49 features).

This modified LASSO problem is still a convex optimization problem and therefore can

be easily solved using any of the available optimization packages, e.g. the CVX pack-

age [173]. The parameters λ and µ were adjusted such that the modified LASSO selects

exactly seven properties from both elements, i.e., both β1 and β2 have exactly seven

nonzero entries. The following seven properties were selected by the LASSO method for

the two elements: atomic weight, density, energy ionization first, temperature boiling,

temperature melting, electronegativity and bulk modulus. The modified LASSO method

for property selection is also robust, i.e., changing slightly the parameters λ and µ does

not give different set of features.

11.3.2 Machine Learning Model

We use a supervised learning regression method to predict the formation enthalpies of

binary metal alloys.

Given n compounds and d specific features (descriptors) we build a matrix X ∈
Rn×d that stores the features of each compound as a column of X. We assume that a

certain property being studied, e.g., enthalpy of formation, is known for each of the n

compounds. We are now presented with a new compound, which is not among the n ones

already studied, and whose same d features, as those of the data, are known and stored

in a vector z ∈ Rd. Regression methods attempt to answer the question: “What is our

best guess of the enthalpy of formation for this new compound?” Regression methods

use X to build a mapping that will yield the desired property from z. In the simplest

case of linear regression, this mapping is just a linear combination of the values of the

features, and the coefficients of the linear combination are extracted by solving a least
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squares problem that involves X and the right-hand side of the properties of the n

compounds.

Linear regression is often too simple model, and is rarely used to predict com-

plex physical properties. A common and efficient regression technique used for real

world data applications is the support vector regression or SVR [174]. SVR is a non-

linear regression technique that employs kernels to implicitly map the inputs into high-

dimensional (nonlinear) feature spaces.

Since the relation between the elemental properties and the desired thermodynamic

property of the compound is typically highly nonlinear, we consider a nonlinear kernel

based regression method. The most suitable SVR variant for our purpose, is the ε-SVR

method with RBF or Gaussian kernels given by

k(xi, xj) = exp
(
−γ‖xi − xj‖2

)
.

For our experiments, we consider the ε-SVR method implemented in the libSVM Mat-

lab library [175]. For the optimal γ value in the kernel, we sweep from 0.1 to 1 with

increments of 0.1 and choose the value that yields the best results (smallest error).

11.4 Results and Discussion

Here, we present our results for the prediction of formation enthalpy for transition

metal alloys using the support vector regression (SVR) model. We found that, SVR

outperforms the other regression approaches.

To illustrate the use of machine learning tools for the prediction of the enthalpy

of formation for binary metal alloys, we considered 648 transition metal alloys whose

formation enthalpies are available [162]. These formation enthalpies are computed using

the Miedema et al. model.

Previously, we discussed feature selection. Collecting such features/properties of

the constituting elements is the first step of the prediction. We acquired 49 different

chemical properties of all the elements from the Database on Properties of Chemical

Elements4. Next, six different physical properties of the 648 compounds (compound

4http://phases.imet-db.ru/elements/main.aspx

http://phases.imet-db.ru/elements/main.aspx
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Figure 11.1: Predictions of enthalpies of formation using different feature sets.

features) were collected from the Materials Project database5 [176].

These six properties were: band gap, number of atoms per unit cell (nsite), volume,

magnetic moment, density and energy-per-atom (energy normalized to per atom in the

unit cell), see [176, The Materials API]. We also collected six different crystal properties

of these 648 compounds from the same database, namely the three unit cell dimensions

a, b, c and the three unit cell angles α, β, γ. Various experiments were conducted using

these data features. Figure 11.1 presents the results obtained from these experiments

for the prediction of the formation enthalpies of these 648 transition metal alloys using

the support vector regression method and various feature sets.

We considered three approaches to select the appropriate elemental features (feature

selection) that affect the formation enthalpies of the metal alloys the most. The first

set of features was based on the literature study. The order of concatenation of features

is done based on the atomic number. Concatenating the elemental features does not

incorporate the stoichiometric information (the ratios of the individual elements in the

compound). We feed this information to the regression model as two new features.

5https://materialsproject.org/

https://materialsproject.org/
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Table 11.1: Relative errors in formation enthalpy predictions for different feature sets.

Feature Set MAE RMSE MRRE NRE R2

Literature 1.3809 5.5598 0.0157 0.0286 0.9563
Sensitivity 1.7657 5.7145 0.0195 0.0365 0.9468

LASSO 4.6838 9.0660 0.1049 0.2004 0.6858
Literature+compound 1.3682 5.4965 0.0156 0.0283 0.9556
Sensitivity+compound 1.6422 5.5695 0.0181 0.0340 0.9508

LASSO+compound 2.2960 6.9060 0.0580 0.1096 0.8704

That is, we include two additional features as inputs, whose values are the ratios of the

first and the second element of the compound, respectively. For example, for compound

ScGe, the values of these two features will be [0.5, 0.5], and for ScGe2, their values will

be [0.33, 0.67]. Thus, we consider 16 features in total.

Figure 11.1(i) presents the formation enthalpies predicted by the SVR model against

the actual formation enthalpies (obtained from [162]) using the literature set of elemental

properties as input features. We used a 10 fold cross-validation method to predict the

formation enthalpies of the 648 compounds. That is, we repeated the experiments

10 times with 10% of the dataset (around 65 compounds) chosen at random without

replacement from the 648 compounds used as test data. Hence, after the 10 trials we

have all 648 alloys’ formation enthalpies predicted once by the model. These predicted

values of the test data are those presented in the figure.

The second set of features considered was based on the sensitivity method [171]

Figure 11.1(ii) presents the formation enthalpies predicted by the SVR model, using

the sensitivity set of elemental features, against the actual formation enthalpies. The

third set of features was selected based on the modified LASSO method. Figure 11.1(iii)

presents the formation enthalpies predicted by the SVR model, using the LASSO set of

elemental features (16 in total), against the actual formation enthalpies.

For the following numerical experiments, we considered the compound features (6

physical and 6 crystal properties of the alloys) along with the elemental and stoichio-

metric information as the input features for the SVR model. Figure 11.1(iv) presents

predicted versus actual formation enthalpies obtained using collectively the literature

and the compound feature sets (16+12 = 28 in total). Similarly, Figure 11.1(v) presents
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Figure 11.2: Predictions of enthalpies of formation of Sc binary alloys.

Table 11.2: Predicted and actual formation enthalpies (FE) of Sc binary alloys.

Formula Actual FE Predicted FE Formula Actual FE Predicted FE
best worst

Sc5Ge3 -75 -75 ScBe5 -31 -58
Sc3Ga2 -63 -63 Sc3In -39 -69
ScCd -55 -56 ScN -184 -152
Sc5Sn3 -76 -78 ScIr -92 -60
ScAl -68 -66 Sc3P2 -157 -110
ScGe -85 -88 ScP -172 -124

the results obtained when the sensitivity and the compound feature sets were used in

the SVR model. The results obtained when the LASSO and the compound feature

sets were used together are presented in Figure 11.1(vi). The various error measures

obtained for each of these six experiments are listed in Table 11.1. In the table, we have

the following error metrics; MAE: Mean Absolute Error, RMSE: Root Mean Square

Error, MRRE: Mean-Regularized Relative Error, and NRE: Net Relative Error, see [13]

for details.

SVR Model’s Predictive Ability

One of the primary goals of developing new techniques for predicting properties of

compounds is the hope to identify compounds with desired properties or to predict

some unknown properties of existing compounds. In this experiment, we examine such

predictive ability of our SVR based model by predicting the formation enthalpies of

several new compounds. Let us assume that all compounds containing the element Sc
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(scandium) are unknown to our SVR model, i.e., we set aside all compounds containing

Sc as a test dataset and put all other compounds into the training set. Element Sc

was chosen since we have 45 binary alloys containing Sc in our initial dataset (which is

a good number of instances for testing), and also because the values of the formation

enthalpy of these compounds lie across a wide range [−181,−6], making it a good test

set. Once the model is trained on the remaining 603 compounds, we predicted the

formation enthalpies (FE) of the 45 Sc binary alloys.

The corresponding results are presented in Figure 11.2. The plots display predicted

FE values for Sc binary alloys using for Figure 11.2(i) the elemental properties (literature

set). The results obtained using the elemental properties (sensitivity analysis), and the

elemental properties (modified LASSO method) are presented in Figure 11.2(ii)–(iii),

respectively. Table 11.2 list the compounds’ chemical formula, the predicted and the

actual formation enthalpy values (in
[

kJ
mol

]
) of the top six closest (best) predictions

(left side) and the bottom six farthest (worst) predictions (right side) for the case of Sc

binary alloys using the 14(+2) elemental properties (literature set) and the compound

properties. We have 73% of the 45 enthalpy predictions within the mean-regularized

relative error of 0.1 (10% relative error) and 89% within 0.15 (15% relative error). We

observe that the values of formation enthalpies predicted by the SVR model are very

close to the values obtained using Miedema’s model and the ”worst” predictions in

Tables 11.2 include some alloys of Sc with heavy elements, i.e., Bi, Pd and Ir. This

experiment illustrates the ability of our SVR model to predict formation enthalpies of

the new compounds. Additional experimental results and details are reported in [13].

Observations: The aforementioned experimental results lead to the following obser-

vations. Firstly, we note that the three feature selection methods select three different

sets of features with little overlap. This shows that: a) there are multiple sets of ele-

mental features that are likely to influence the formation enthalpy of the alloys; b) the

machine learning features are not the same as those selected based on a-priori knowledge

of underlying physics; c) the two machine learning feature sets also differ. Our main

observation is that predictions based on the literature set (based on prior knowledge)

are better than the ones obtained using the machine learning sets. Clearly, the fourth

feature set (literature+compound) yields the best results amongst all the experiments.



178

This shows that coupling actual knowledge of relevant physics (domain knowledge) with

machine learning provides improved performance. This is likely because the machine

learning methods attempt to find a linear relation between the features and the target

property. However, the actual relation between the different properties of a compound

will typically be highly nonlinear. Hence, we observe that coupling prior physics (do-

main) knowledge with machine learning methods tend to give better results than using

pure machine learning features. We also observe that the different machine learning

methods do not yield same results (do not agree with each other). The features selected

by the sensitivity method differs from the ones selected by the modified LASSO.



Chapter 12

Conclusion

This thesis presented a number of methods for various problems in machine learning

and other areas involving large dimensional matrices and scientific data.

Matrix spectrum problems: In the first part, we demonstrated how combining

ideas from numerical linear algebra and stochastic methods, we can develop compu-

tationally inexpensive methods for matrix trace and spectrum related problems that

are scalable to very large matrices. These methods are fast and require no matrix de-

compositions, making them appealing for many large data applications. Another key

advantage of these methods is that, they require only matrix-vector products and are

easily parallelizable. Hence, these methods have advantages in parallel and distributed

settings. We also presented a novel rank estimator which along with the Krylov subspace

methods simultaneously estimates the numerical rank of matrices and approximates the

associated principal subspace. The method can be used as a stopping criterion for the

Krylov subspace methods, and unlike prior methods, it does not require computing the

complete eigen-decomposition for rank estimation.

Future Work: In section 1.2, we saw how computing matrix functions is related to com-

puting the function at the eigenvalues of the matrix. Interesting future work includes

developing matrix function approximation methods that use certain information about

the matrix spectrum to obtain better approximation of the function at points that are

179
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closer to the eigenvalues of the matrix. In particular, we can first compute the cumu-

lative spectral density (CDOS) of the matrix (related to DOS discussed in chapter 3)

inexpensively. Then, we can use this CDOS to obtain better function approximation

by: a) Barycentric CDOS interpolation: approximating the function f using Barycen-

tric interpolation [57], where the interpolation points are chosen using the inverse of the

CDOS. b) Discrete spectrum specific orthogonal polynomials: expanding the function

using discrete orthogonal polynomials, where the polynomials are orthogonal wrt. the

spectral distribution (CDOS) of the matrix.

Matrix approximation: We illustrated how the mutlilevel coarsening idea can be

adapted for matrix approximation problems such as computing the partial SVD, col-

umn subset selection, and graph sparsification. This method exploits the structure

of the input matrix and yields superior approximations. Coarsening is also inexpen-

sive compared to leverage score sampling, and often yields comparable results. While

coarsening has traditionally been exploited in a completely different context to devise

multilevel schemes for sparse systems as well as for graph partitioning, it appears that

the same principles offer a tremendous potential for solving problems related to data.

We also demonstrated how rank shrinkage (a linear algebra related idea) can be used

to obtain improved incoherent dictionaries in the dictionary learning problem.

Future Work: Interesting future work here includes adapting the coarsening strategy

presented in the thesis for matrix approximations in online and streaming settings. In

the streaming model, the columns of the input matrix can be accessed and processed

only once and storage is severely limited. The idea is to maintain a small sketch of

the streaming (or online) data based on column matching, similar to our coarsening

strategy. This method will improve on the existing “frequent directions” method for

deterministic sketching for streaming data.

Applications of codes: The second part of the thesis was dedicated to presenting

new nontraditional applications of codes, primarily in solving problems related to ma-

chine learning and high dimensional data analysis. We demonstrated that certain error
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correcting codes (which are almost deterministic) mimic the randomness properties de-

sired for sampling data matrices. Using this, we illustrated how codes can be used

to obtain low rank approximations and solve least squares regression problems. The

proposed approach has several advantages such as (a) reduced randomness, (b) loga-

rithmic factor gain in sampling complexity, (c) efficient implementation in parallel and

distributed settings and others. We also demonstrated that codewords from BCH codes,

a popular coding scheme, performs exceptionally well in the group testing problem, and

outperforms random GT schemes. Lastly, we combined the ideas of group testing and

codes to present a new algorithm for large scale multilabel classification. The proposed

algorithm has many promising advantages such as (a) simple prediction algorithm that

is very inexpensive, (b) operates on the binary alphabet, hence leverages efficient binary

classifiers, and (c) exploits the error correction capabilities of codes for the first time to

correct prediction errors.

Future Work: Many important problems such as experimental design, Bayesian opti-

mality, column subset selection (CSSP), sparse modeling and others, can be naturally

formulated as a cardinality constrained maximization problem. Here, a set function

F (S) is maximized under a K-cardinality constraint, i.e., we wish to solve,

max
S⊂V,|S|≤K

F (S),

where V = {v1, . . . , vn} is the large set of possible inputs. An interesting future work

includes developing a new method which extends the group testing idea for solving such

cardinality constrained optimization problems.

ML for science: The third part of the thesis focussed on developing algorithms for

interpretable learning from scientific data. We presented a new statistical machine

learning framework called Union of Intersections (UoI) for interpretable learning and

prediction. The advantages of the framework were demonstrated in regression and CUR

decompositions, and also its applicability to scientific applications. We also developed

a new nonnegative matrix factorization (NMF) algorithm, UoI-NMFcluster , that a)

yields more interpretable results, b) gives sparser solutions, and c) is robust to highly
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noisy data. The proposed algorithm obtained interpretable decompositions, capturing

the known characteristics embedded within the noisy neurophysiological data. Finally,

we also illustrated how machine learning (regression) techniques can be employed for

the prediction of formation enthalpies of new metal alloys using easily available material

data. Such work helps us bypass time intensive calculations, e.g., ab-initio calculations,

used in material science.

Future Work: As future work, we are exploring tools such as dictionary learning and

neural networks for machine learning in Neuroscience and other scientific applications.

In particular, we use a constrained (nonnegative and incoherent) dictionary learning

algorithm to learn overcomplete representations of neurophysiological datasets. The

constraints help us learn dictionary atoms that are unique and likely more interpretable

from Neurosience viewpoint. Next, these overcomplete dictionaries can be coupled with

neural networks (as auto-encoders) to do classifications and predictions.
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[55] Ramon Carbó-Dorca. Smooth function topological structure descriptors based on graph-

spectra. Journal of Mathematical Chemistry, 44(2):373–378, 2008.

[56] Gene H. Golub and Charles F Van Loan. Matrix computations, volume 3. JHU Press,

2012.

[57] Lloyd N Trefethen. Approximation theory and approximation practice. Siam, 2013.

[58] Edoardo Di Napoli, Eric Polizzi, and Yousef Saad. Efficient estimation of eigenvalue counts

in an interval. ArXiv preprint ArXiv:1308.4275, 2013.

[59] Yunong Zhang and William E Leithead. Approximate implementation of the logarithm of

the matrix determinant in Gaussian process regression. journal of Statistical Computation

and Simulation, 77(4):329–348, 2007.

[60] Nicholas Hale, Nicholas J Higham, and Lloyd N Trefethen. Computing aˆα,\log(a), and

related matrix functions by contour integrals. SIAM Journal on Numerical Analysis,

46(5):2505–2523, 2008.

[61] Cameron Musco, Praneeth Netrapalli, Aaron Sidford, Shashanka Ubaru, and David P

Woodruff. Spectrum approximation beyond fast matrix multiplication: Algorithms and

hardness. arXiv preprint arXiv:1704.04163, 2017.



188

[62] Insu Han, Dmitry Malioutov, Haim Avron, and Jinwoo Shin. Approximating spectral

sums of large-scale matrices using stochastic chebyshev approximations. SIAM Journal

on Scientific Computing, 39(4):A1558–A1585, 2017.

[63] Lin Lin, Yousef Saad, and Chao Yang. Approximating spectral densities of large matrices.

SIAM Review, 58(1):34–65, 2016.

[64] Lin-Wang Wang. Calculating the density of states and optical-absorption spectra of large

quantum systems by the plane-wave moments method. Physical Review B, 49(15):10154,

1994.

[65] Philip Rabinowitz. Rough and ready error estimates in Gaussian integration of analytic

functions. Communications of the ACM, 12(5):268–270, 1969.

[66] Timothy A Davis and Yifan Hu. The University of Florida sparse matrix collection. ACM

Transactions on Mathematical Software (TOMS), 38(1):1, 2011.

[67] N. Halko, P. Martinsson, and J. Tropp. Finding Structure with Randomness: Proba-

bilistic Algorithms for Constructing Approximate Matrix Decompositions. SIAM Review,

53(2):217–288, 2011, http://dx.doi.org/10.1137/090771806.

[68] X.G. Doukopoulos and G.V. Moustakides. Fast and stable subspace tracking. IEEE

Transactions on Signal Processing, 56(4):1452–1465, April 2008.

[69] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer.

Online passive-aggressive algorithms. The Journal of Machine Learning Research, 7:551–

585, 2006.

[70] Rajkumar Arora, A Cotter, Karen Livescu, and Nathan Srebro. Stochastic optimization

for PCA and PLS. In Communication, Control, and Computing (Allerton), 2012 50th

Annual Allerton Conference on, pages 861–868. IEEE, 2012.

[71] Justin P Haldar and Diego Hernando. Rank-constrained solutions to linear matrix equa-

tions using power factorization. Signal Processing Letters, IEEE, 16(7):584–587, 2009.

[72] P. Hansen. Rank-Deficient and Discrete Ill-Posed Problems. Society for Industrial and

Applied Mathematics, 1998, http://epubs.siam.org/doi/pdf/10.1137/1.9780898719697.

[73] Tony F Chan. Rank revealing QR factorizations. Linear algebra and its applications,

88:67–82, 1987.

[74] Gonzalo Camba-Méndez and George Kapetanios. Statistical tests and estimators of the

rank of a matrix and their applications in econometric modelling. 2008.



189

[75] Patrick O Perry and Patrick J Wolfe. Minimax rank estimation for subspace tracking.

Selected Topics in Signal Processing, IEEE Journal of, 4(3):504–513, 2010.

[76] S. Kritchman and B. Nadler. Non-Parametric Detection of the Number of Signals: Hy-

pothesis Testing and Random Matrix Theory. IEEE Transactions on Signal Processing,

57(10):3930–3941, Oct 2009.

[77] Efstathia Bura and R Dennis Cook. Rank estimation in reduced-rank regression. Journal

of Multivariate Analysis, 87(1):159–176, 2003.

[78] Edward Hannan. Estimating the dimension of a linear system. Journal of Multivariate

analysis, 11(4):459–473, 1981.

[79] Gene Golub, Virginia Klema, and Gilbert W Stewart. Rank degeneracy and least squares

problems. Technical report, DTIC Document, 1976.

[80] R. McWeeny. Some recent advances in density matrix theory. Rev. Mod. Phys., 32:335–369,

1960.

[81] Yousef Saad. Filtered conjugate residual-type algorithms with applications. SIAM Journal

on Matrix Analysis and Applications, 28(3):845–870, 2006.

[82] C Lanczos. Applied analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956.

[83] Sergey Viktorovich Alyukov. Approximation of step functions in problems of mathematical

modeling. Mathematical Models and Computer Simulations, 3(5):661–669, 2011.

[84] Mati Wax and Thomas Kailath. Detection of signals by information theoretic criteria.

IEEE Transactions on Acoustics, Speech, and Signal Processing, 33(2):387–392, 1985.

[85] Shira Kritchman and Boaz Nadler. Non-parametric detection of the number of signals:

Hypothesis testing and random matrix theory. IEEE Transactions on Signal Processing,

57(10):3930–3941, 2009.
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